Explore discussions on Databricks administration, deployment strategies, and architectural best practices. Connect with administrators and architects to optimize your Databricks environment for performance, scalability, and security.
Internal error. Attach your notebook to a different compute or restart the current compute.
java.lang.RuntimeException: abort: DriverClient destroyed at com.databricks.backend.daemon.driver.DriverClient.$anonfun$poll$3(DriverClient.scala:577) at scala.concurrent.Future.$anonfun$flatMap$1(Future.scala:307) at scala.concurrent.impl.Promise.$anonfun$transformWith$1(Promise.scala:54) at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:77) at com.databricks.threading.DatabricksExecutionContext$InstrumentedRunnable.run(DatabricksExecutionContext.scala:36) at com.databricks.threading.NamedExecutor$$anon$2.$anonfun$run$2(NamedExecutor.scala:366) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:420) at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:418) at com.databricks.threading.NamedExecutor.withAttributionContext(NamedExecutor.scala:285) at com.databricks.threading.NamedExecutor$$anon$2.$anonfun$run$1(NamedExecutor.scala:364) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at com.databricks.context.integrity.IntegrityCheckContext$ThreadLocalStorage$.withValue(IntegrityCheckContext.scala:44) at com.databricks.threading.NamedExecutor$$anon$2.run(NamedExecutor.scala:356) at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128) at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628) at java.base/java.lang.Thread.run(Thread.java:829)
Facing this error.spark is getting crashed automatically
@Retired_mod yeah, in one dataset there are slightly higher data points.schema are same.when the spark crashed i have checked the memory usage.it was around 50%.
Connect with Databricks Users in Your Area
Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.
If there isn’t a group near you, start one and help create a community that brings people together.