cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

DLT AutoLoader S3 Access Denied Using File Notification mode

samhollenbach
New Contributor III

Hi all,

I'm attempting to switch our DLT pipeline using Auto Loader from Directory Listing to File Notification mode, and running in to S3 Access Denied issues with very little detail. I have followed all the instructions here and here to set up File Notification permissions and an Instance Profile with access to the S3 bucket, yet I still get Access Denied on S3 which trying to start the DLT pipeline. The error screenshot is attached below as well as a full stack trace here:

 

 

org.apache.spark.sql.streaming.StreamingQueryException: [STREAM_FAILED] Query [id = bf9a834c-bf77-4d65-9628-42beb2cff44b, runId = 23272cd1-89b3-4c85-8ca3-c8bb28cb8c73] terminated with exception: Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 5MDSSV7R6QE1B2RX; S3 Extended Request ID: L/xs1/P3kn9+hE24ZMUdPrMEvUrMc4+kZgVnOoMRoD5WEKegrTnY1HitV/lhg3aC2CfzfMJp9Tw=; Proxy: null)

at org.apache.spark.sql.execution.streaming.StreamExecution.$anonfun$runStream$1(StreamExecution.scala:448)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.logging.UsageLogging.$anonfun$withAttributionContext$1(UsageLogging.scala:426)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.AttributionContext$.withValue(AttributionContext.scala:196)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:424)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:418)
at com.databricks.spark.util.PublicDBLogging.withAttributionContext(DatabricksSparkUsageLogger.scala:25)
at com.databricks.logging.UsageLogging.withAttributionTags(UsageLogging.scala:470)
at com.databricks.logging.UsageLogging.withAttributionTags$(UsageLogging.scala:455)
at com.databricks.spark.util.PublicDBLogging.withAttributionTags(DatabricksSparkUsageLogger.scala:25)
at com.databricks.spark.util.PublicDBLogging.withAttributionTags0(DatabricksSparkUsageLogger.scala:70)
at com.databricks.spark.util.DatabricksSparkUsageLogger.withAttributionTags(DatabricksSparkUsageLogger.scala:170)
at com.databricks.spark.util.UsageLogging.$anonfun$withAttributionTags$1(UsageLogger.scala:495)
at com.databricks.spark.util.UsageLogging$.withAttributionTags(UsageLogger.scala:607)
at com.databricks.spark.util.UsageLogging$.withAttributionTags(UsageLogger.scala:616)
at com.databricks.spark.util.UsageLogging.withAttributionTags(UsageLogger.scala:495)
at com.databricks.spark.util.UsageLogging.withAttributionTags$(UsageLogger.scala:493)
at org.apache.spark.sql.execution.streaming.StreamExecution.withAttributionTags(StreamExecution.scala:82)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:354)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.$anonfun$run$2(StreamExecution.scala:276)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.unity.UCSEphemeralState$Handle.runWith(UCSEphemeralState.scala:41)
at com.databricks.unity.HandleImpl.runWith(UCSHandle.scala:99)
at com.databricks.unity.HandleImpl.$anonfun$runWithAndClose$1(UCSHandle.scala:104)
at scala.util.Using$.resource(Using.scala:269)
at com.databricks.unity.HandleImpl.runWithAndClose(UCSHandle.scala:103)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:276)


com.amazonaws.services.s3.model.AmazonS3Exception: Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 5MDSSV7R6QE1B2RX; S3 Extended Request ID: L/xs1/P3kn9+hE24ZMUdPrMEvUrMc4+kZgVnOoMRoD5WEKegrTnY1HitV/lhg3aC2CfzfMJp9Tw=; Proxy: null)

at com.amazonaws.http.AmazonHttpClient$RequestExecutor.handleErrorResponse(AmazonHttpClient.java:1879)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.handleServiceErrorResponse(AmazonHttpClient.java:1418)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeOneRequest(AmazonHttpClient.java:1387)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeHelper(AmazonHttpClient.java:1157)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.doExecute(AmazonHttpClient.java:814)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeWithTimer(AmazonHttpClient.java:781)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.execute(AmazonHttpClient.java:755)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.access$500(AmazonHttpClient.java:715)
at com.amazonaws.http.AmazonHttpClient$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:697)
at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:561)
at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:541)
at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:5456)
at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:5403)
at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:5397)
at com.amazonaws.services.s3.AmazonS3Client.getBucketNotificationConfiguration(AmazonS3Client.java:2843)
at com.amazonaws.services.s3.AmazonS3Client.getBucketNotificationConfiguration(AmazonS3Client.java:2826)
at com.databricks.sql.sqs.autoIngest.S3EventNotificationSetup.$anonfun$setUpS3EventNotification$1(S3EventNotificationSetup.scala:181)
at com.databricks.sql.sqs.autoIngest.S3EventNotificationSetup$.withRetries(S3EventNotificationSetup.scala:642)
at com.databricks.sql.sqs.autoIngest.S3EventNotificationSetup.setUpS3EventNotification(S3EventNotificationSetup.scala:180)
at com.databricks.sql.sqs.autoIngest.S3EventNotificationSetup.<init>(S3EventNotificationSetup.scala:144)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(NativeConstructorAccessorImpl.java:-2)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at com.databricks.sql.fileNotification.autoIngest.EventNotificationSetup$.$anonfun$create$1(EventNotificationSetup.scala:59)
at com.databricks.sql.fileNotification.autoIngest.ResourceManagementUtils$.unwrapInvocationTargetException(ResourceManagementUtils.scala:42)
at com.databricks.sql.fileNotification.autoIngest.EventNotificationSetup$.create(EventNotificationSetup.scala:50)
at com.databricks.sql.fileNotification.autoIngest.CloudFilesSourceProvider.$anonfun$createSource$1(CloudFilesSourceProvider.scala:124)
at scala.Option.getOrElse(Option.scala:189)
at com.databricks.sql.fileNotification.autoIngest.CloudFilesSourceProvider.createSource(CloudFilesSourceProvider.scala:109)
at org.apache.spark.sql.execution.datasources.DataSource.createSource(DataSource.scala:322)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1.$anonfun$applyOrElse$1(MicroBatchExecution.scala:183)
at scala.collection.mutable.HashMap.getOrElseUpdate(HashMap.scala:86)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1.applyOrElse(MicroBatchExecution.scala:180)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1.applyOrElse(MicroBatchExecution.scala:178)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:465)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(origin.scala:69)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:465)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:316)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:312)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1269)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1268)
at org.apache.spark.sql.catalyst.plans.logical.Filter.mapChildren(basicLogicalOperators.scala:325)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:316)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:312)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1269)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1268)
at org.apache.spark.sql.catalyst.plans.logical.Project.mapChildren(basicLogicalOperators.scala:83)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:316)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:312)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1269)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1268)
at org.apache.spark.sql.catalyst.plans.logical.Project.mapChildren(basicLogicalOperators.scala:83)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:316)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:312)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1269)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1268)
at org.apache.spark.sql.catalyst.plans.logical.Project.mapChildren(basicLogicalOperators.scala:83)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:316)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:312)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1269)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1268)
at org.apache.spark.sql.catalyst.plans.logical.Project.mapChildren(basicLogicalOperators.scala:83)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:316)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:312)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1269)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1268)
at org.apache.spark.sql.catalyst.plans.logical.CollectMetrics.mapChildren(basicLogicalOperators.scala:2199)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:470)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:316)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:312)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:33)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:441)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:409)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.planQuery(MicroBatchExecution.scala:178)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.logicalPlan$lzycompute(MicroBatchExecution.scala:340)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.logicalPlan(MicroBatchExecution.scala:340)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.initSources(MicroBatchExecution.scala:356)
at org.apache.spark.sql.execution.streaming.StreamExecution.$anonfun$runStream$2(StreamExecution.scala:403)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1113)
at org.apache.spark.sql.execution.streaming.StreamExecution.$anonfun$runStream$1(StreamExecution.scala:372)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.logging.UsageLogging.$anonfun$withAttributionContext$1(UsageLogging.scala:426)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.AttributionContext$.withValue(AttributionContext.scala:196)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:424)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:418)
at com.databricks.spark.util.PublicDBLogging.withAttributionContext(DatabricksSparkUsageLogger.scala:25)
at com.databricks.logging.UsageLogging.withAttributionTags(UsageLogging.scala:470)
at com.databricks.logging.UsageLogging.withAttributionTags$(UsageLogging.scala:455)
at com.databricks.spark.util.PublicDBLogging.withAttributionTags(DatabricksSparkUsageLogger.scala:25)
at com.databricks.spark.util.PublicDBLogging.withAttributionTags0(DatabricksSparkUsageLogger.scala:70)
at com.databricks.spark.util.DatabricksSparkUsageLogger.withAttributionTags(DatabricksSparkUsageLogger.scala:170)
at com.databricks.spark.util.UsageLogging.$anonfun$withAttributionTags$1(UsageLogger.scala:495)
at com.databricks.spark.util.UsageLogging$.withAttributionTags(UsageLogger.scala:607)
at com.databricks.spark.util.UsageLogging$.withAttributionTags(UsageLogger.scala:616)
at com.databricks.spark.util.UsageLogging.withAttributionTags(UsageLogger.scala:495)
at com.databricks.spark.util.UsageLogging.withAttributionTags$(UsageLogger.scala:493)
at org.apache.spark.sql.execution.streaming.StreamExecution.withAttributionTags(StreamExecution.scala:82)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:354)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.$anonfun$run$2(StreamExecution.scala:276)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.unity.UCSEphemeralState$Handle.runWith(UCSEphemeralState.scala:41)
at com.databricks.unity.HandleImpl.runWith(UCSHandle.scala:99)
at com.databricks.unity.HandleImpl.$anonfun$runWithAndClose$1(UCSHandle.scala:104)
at scala.util.Using$.resource(Using.scala:269)
at com.databricks.unity.HandleImpl.runWithAndClose(UCSHandle.scala:103)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:276)

 

 

 More information:

* The bucket is set up in the Unity Catalog as an External Location already -- does this interfere with Auto Loader File Notification mode?

* The bucket is ingested with Directory Listing mode perfectly fine with a different DLT pipeline

The DLT script source is here:

 

 

import dlt
from pyspark.sql.functions import *
from pyspark.sql.types import *

json_schema = StructType(
    [
        StructField("timestamp", TimestampType(), True),
        StructField("name", StringType(), True),
        StructField("value", FloatType(), True),
        StructField("type", StringType(), True),
        StructField("site_id", StringType(), True),
        StructField("tenant_id", StringType(), True),
    ]
)

@dlt.table(
    partition_cols=["site_id", "month"],
)
def iot():
    return (
        # Since this is a streaming source, this table is incremental.
        spark.readStream.format("cloudFiles")
        .schema(json_schema)
        .option("cloudFiles.format", "csv")
        .option("cloudFiles.maxFilesPerTrigger", "3000000")
        .option("cloudFiles.maxBytesPerTrigger", "3000m")
        .option("cloudFiles.useNotifications", "true")
        .option("cloudFiles.region", "us-west-2")
        .load("s3://csv-data-XXXXXXXXXXX")
        .where('timestamp >= "2023-09-20"')
        .withColumn("month", concat_ws("-", year("timestamp"), month("timestamp")))
        .withColumn("value", col("value").cast("float"))
        .withColumn("timestamp", col("timestamp").cast("timestamp"))
        .select("site_id", "month", "timestamp", "name", "value")
    )

 

 

Please let me know if there is anymore information I may provide to help out.

Thanks!

1 ACCEPTED SOLUTION

Accepted Solutions

samhollenbach
New Contributor III

Thanks @Kaniz_Fatma, we ended up abandoning this route due to limitations imposed by the Shared compute access mode enforced by DLT's, and opted for a standard Spark Structured Streaming Job (using Kafka) in the end.

View solution in original post

4 REPLIES 4

Kaniz_Fatma
Community Manager
Community Manager

Hi @samhollenbachThe "Access Denied" error you're encountering when switching to File Notification mode in your DLT pipeline could be due to several reasons.

Here are a few things you might want to check.

1. **Permissions**: Ensure you have the correct permissions. In File Notification mode, Auto Loader requires additional cloud permissions. You mentioned that you've set up File Notification permissions and an Instance Profile with access to the S3 bucket, but it might be worth double-checking these. You need to have READ FILES permissions on the external location. 

2. **Cross-Account Access**: If you're trying to load data across AWS accounts, Auto Loader supports this by assuming a role. Ensure you've set up the temporary security credentials created by AssumeRole correctly.

3. **Unity Catalog Configuration**: You asked if having the bucket set up in the Unity Catalog as an External Location could interfere with Auto Loader File Notification mode. According to the documentation, you can use Auto Loader to ingest data from any external location managed by Unity Catalog.

However, Unity Catalog does not support cross-cloud or cross-account configurations for Auto Loader. If your setup involves such a configuration, this could be the source of the issue.

If you've checked all these and are still encountering the issue, it might be best to contact Databricks support by filing a support ticket for further assistance.

kulkpd
Contributor

Below are topic to check:

1. Permissions mentioned here : https://docs.databricks.com/en/ingestion/auto-loader/file-notification-mode.html
2. try using SQS directly instead of letting databricks manage the SQS and SNS resources like below:
Accordingly update the SQS resource policy so that roleArn can read the messages.

.option('cloudFiles.region', 'us-xxx-2')
.option('cloudFiles.queueUrl', 'name-of-queue')
.option('cloudFiles.roleArn', 'ARN of your role')
.option('cloudFiles.roleSessionName','roleSessionName')
.option('cloudFiles.stsEndpoint','endpoint')
 

Kaniz_Fatma
Community Manager
Community Manager

Hi @samhollenbach , We can build a thriving shared knowledge and insights community. Come back and mark the best answers to contribute to our ongoing pursuit of excellence.

samhollenbach
New Contributor III

Thanks @Kaniz_Fatma, we ended up abandoning this route due to limitations imposed by the Shared compute access mode enforced by DLT's, and opted for a standard Spark Structured Streaming Job (using Kafka) in the end.

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group