Error in SQL statement: AnalysisException:
The query operator `UpdateCommandEdge` contains one or more unsupported
expression types Aggregate, Window or Generate.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
02-01-2023 05:53 AM
com.databricks.backend.common.rpc.DatabricksExceptions$SQLExecutionException: org.apache.spark.sql.AnalysisException:
The query operator `UpdateCommandEdge` contains one or more unsupported
expression types Aggregate, Window or Generate.
Invalid expressions: [avg(spark_catalog.eds_us_lake_cdp.cdp_job_log.Duration) OVER (PARTITION BY spark_catalog.eds_us_lake_cdp.cdp_job_log.job_id ORDER BY spark_catalog.eds_us_lake_cdp.cdp_job_log.Job_Start_Date_Time ASC NULLS FIRST RANGE BETWEEN INTERVAL '29' DAY PRECEDING AND CURRENT ROW), avg(spark_catalog.eds_us_lake_cdp.cdp_job_log.Duration)];
UpdateCommandEdge Delta[version=433, s3://tpc-aws-ted-dev-edpp-lake-cdp-us-east-1/eds_us_lake_cdp/cdp_job_log/delta], [Job_Run_Id#10299, Job_Id#10300, Batch_Run_Id#10301, Tidal_Job_No#10302, Source_Layer#10303, Source_Object_Location#10304, Source_Object_Name#10305, Target_Layer#10306, Target_Object_Location#10307, Target_Object_Name#10308, Status#10309, Status_Source#10310, Step_Control_Log#10311, Job_Scheduled_Date_Time#10312, Job_Start_Date_Time#10313, Job_End_Date_Time#10314, Error_Description#10315, Source_Record_Count#10316, Target_Record_Count#10317, MD5_HASH#10318, User_Id#10319, Created_Date_Time#10320, Duration#10321, round(avg(Duration#10321) windowspecdefinition(job_id#10300, Job_Start_Date_Time#10313 ASC NULLS FIRST, specifiedwindowframe(RangeFrame, -INTERVAL '29' DAY, currentrow$())), 2)]
+- SubqueryAlias spark_catalog.eds_us_lake_cdp.cdp_job_log
+- Relation eds_us_lake_cdp.cdp_job_log[Job_Run_Id#10299,Job_Id#10300,Batch_Run_Id#10301,Tidal_Job_No#10302,Source_Layer#10303,Source_Object_Location#10304,Source_Object_Name#10305,Target_Layer#10306,Target_Object_Location#10307,Target_Object_Name#10308,Status#10309,Status_Source#10310,Step_Control_Log#10311,Job_Scheduled_Date_Time#10312,Job_Start_Date_Time#10313,Job_End_Date_Time#10314,Error_Description#10315,Source_Record_Count#10316,Target_Record_Count#10317,MD5_HASH#10318,User_Id#10319,Created_Date_Time#10320,Duration#10321,Average_Run#10322] parquet
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.failAnalysis(CheckAnalysis.scala:60)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.failAnalysis$(CheckAnalysis.scala:59)
at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:221)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis$2(CheckAnalysis.scala:623)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis$2$adapted(CheckAnalysis.scala:105)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:358)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis$1(CheckAnalysis.scala:105)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis(CheckAnalysis.scala:100)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis$(CheckAnalysis.scala:100)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:221)
at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:275)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:331)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:272)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:128)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:268)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:265)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:968)
at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:265)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:129)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:126)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:118)
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:103)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:968)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:101)
at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:803)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:968)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:798)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:695)
at com.databricks.backend.daemon.driver.SQLDriverLocal.$anonfun$executeSql$1(SQLDriverLocal.scala:91)
at scala.collection.immutable.List.map(List.scala:297)
at com.databricks.backend.daemon.driver.SQLDriverLocal.executeSql(SQLDriverLocal.scala:37)
at com.databricks.backend.daemon.driver.SQLDriverLocal.repl(SQLDriverLocal.scala:145)
at com.databricks.backend.daemon.driver.DriverLocal.$anonfun$execute$13(DriverLocal.scala:634)
at com.databricks.logging.Log4jUsageLoggingShim$.$anonfun$withAttributionContext$1(Log4jUsageLoggingShim.scala:33)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.AttributionContext$.withValue(AttributionContext.scala:94)
at com.databricks.logging.Log4jUsageLoggingShim$.withAttributionContext(Log4jUsageLoggingShim.scala:31)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:205)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:204)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionContext(DriverLocal.scala:59)
at com.databricks.logging.UsageLogging.withAttributionTags(UsageLogging.scala:240)
at com.databricks.logging.UsageLogging.withAttributionTags$(UsageLogging.scala:225)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionTags(DriverLocal.scala:59)
at com.databricks.backend.daemon.driver.DriverLocal.execute(DriverLocal.scala:611)
at com.databricks.backend.daemon.driver.DriverWrapper.$anonfun$tryExecutingCommand$1(DriverWrapper.scala:615)
at scala.util.Try$.apply(Try.scala:213)
at com.databricks.backend.daemon.driver.DriverWrapper.tryExecutingCommand(DriverWrapper.scala:607)
at com.databricks.backend.daemon.driver.DriverWrapper.executeCommandAndGetError(DriverWrapper.scala:526)
at com.databricks.backend.daemon.driver.DriverWrapper.executeCommand(DriverWrapper.scala:561)
at com.databricks.backend.daemon.driver.DriverWrapper.runInnerLoop(DriverWrapper.scala:431)
at com.databricks.backend.daemon.driver.DriverWrapper.runInner(DriverWrapper.scala:374)
at com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:225)
at java.lang.Thread.run(Thread.java:748)
at com.databricks.backend.daemon.driver.SQLDriverLocal.executeSql(SQLDriverLocal.scala:130)
at com.databricks.backend.daemon.driver.SQLDriverLocal.repl(SQLDriverLocal.scala:145)
at com.databricks.backend.daemon.driver.DriverLocal.$anonfun$execute$13(DriverLocal.scala:634)
at com.databricks.logging.Log4jUsageLoggingShim$.$anonfun$withAttributionContext$1(Log4jUsageLoggingShim.scala:33)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.AttributionContext$.withValue(AttributionContext.scala:94)
at com.databricks.logging.Log4jUsageLoggingShim$.withAttributionContext(Log4jUsageLoggingShim.scala:31)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:205)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:204)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionContext(DriverLocal.scala:59)
at com.databricks.logging.UsageLogging.withAttributionTags(UsageLogging.scala:240)
at com.databricks.logging.UsageLogging.withAttributionTags$(UsageLogging.scala:225)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionTags(DriverLocal.scala:59)
at com.databricks.backend.daemon.driver.DriverLocal.execute(DriverLocal.scala:611)
at com.databricks.backend.daemon.driver.DriverWrapper.$anonfun$tryExecutingCommand$1(DriverWrapper.scala:615)
at scala.util.Try$.apply(Try.scala:213)
at com.databricks.backend.daemon.driver.DriverWrapper.tryExecutingCommand(DriverWrapper.scala:607)
at com.databricks.backend.daemon.driver.DriverWrapper.executeCommandAndGetError(DriverWrapper.scala:526)
at com.databricks.backend.daemon.driver.DriverWrapper.executeCommand(DriverWrapper.scala:561)
at com.databricks.backend.daemon.driver.DriverWrapper.runInnerLoop(DriverWrapper.scala:431)
at com.databricks.backend.daemon.driver.DriverWrapper.runInner(DriverWrapper.scala:374)
at com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:225)
at java.lang.Thread.run(Thread.java:748)
- Labels:
-
SQL
-
SQL Statement
-
Target
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
02-01-2023 10:53 PM
Hi, The aggregation is not supported. Also, could you provide the ask here and also a context of the environment?
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
02-01-2023 11:07 PM
update eds_us_lake_cdp.cdp_job_log set Average_Run = round(avg(Duration) OVER(partition by job_id ORDER BY Job_Start_Date_Time RANGE BETWEEN INTERVAL 29 DAY PRECEDING AND CURRENT ROW), 2)
I have this query but it's thhrowing error. Anything we can do on it.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
02-02-2023 01:05 AM
Spark version is 3.2.1
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
04-08-2023 09:41 PM
Hi @Pradeep Chauhan
Thank you for posting your question in our community! We are happy to assist you.
To help us provide you with the most accurate information, could you please take a moment to review the responses and select the one that best answers your question?
This will also help other community members who may have similar questions in the future. Thank you for your participation and let us know if you need any further assistance!