cancel
Showing results forย 
Search instead forย 
Did you mean:ย 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results forย 
Search instead forย 
Did you mean:ย 

spark is case sensitive?ย Spark is not case sensitive by default. If you have same column name in different case (Name, name), if you try to select eit...

ramravi
Contributor II

spark is case sensitive?

Spark is not case sensitive by default. If you have same column name in different case (Name, name), if you try to select either "Name" or "name" column you will get column ambiguity error.

There is a way to handle this issue by adding spark config , using a SparkSession object named spark:

spark.conf.set('spark.sql.caseSensitive', True)

By default it is False.

1 REPLY 1

source2sea
Contributor

Hi, even though i set the conf to be true, on writing to disk it had exceptions complaining it has duplicate columns.

below is the error message

org.apache.spark.sql.AnalysisException: Found duplicate column(s) in the data to save: branchavailablity.element.salesleadtime
	at org.apache.spark.sql.delta.DeltaAnalysisException$.apply(DeltaSharedExceptions.scala:57)
	at org.apache.spark.sql.delta.schema.SchemaMergingUtils$.checkColumnNameDuplication(SchemaMergingUtils.scala:117)
	at org.apache.spark.sql.delta.schema.SchemaMergingUtils$.mergeSchemas(SchemaMergingUtils.scala:160)
	at org.apache.spark.sql.delta.schema.ImplicitMetadataOperation$.mergeSchema(ImplicitMetadataOperation.scala:161)
	at org.apache.spark.sql.delta.schema.ImplicitMetadataOperation.updateMetadata(ImplicitMetadataOperation.scala:64)
	at org.apache.spark.sql.delta.schema.ImplicitMetadataOperation.updateMetadata$(ImplicitMetadataOperation.scala:52)
	at org.apache.spark.sql.delta.commands.WriteIntoDelta.updateMetadata(WriteIntoDelta.scala:70)
	at org.apache.spark.sql.delta.commands.WriteIntoDelta.write(WriteIntoDelta.scala:137)
	at org.apache.spark.sql.delta.commands.WriteIntoDelta.$anonfun$run$1(WriteIntoDelta.scala:95)
	at org.apache.spark.sql.delta.commands.WriteIntoDelta.$anonfun$run$1$adapted(WriteIntoDelta.scala:90)
	at org.apache.spark.sql.delta.DeltaLog.withNewTransaction(DeltaLog.scala:255)
	at org.apache.spark.sql.delta.commands.WriteIntoDelta.run(WriteIntoDelta.scala:90)
	at org.apache.spark.sql.delta.sources.DeltaDataSource.createRelation(DeltaDataSource.scala:161)
	at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:45)
	at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:75)
	at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:73)
	at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:84)
	at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:97)
	at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
	at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
	at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
	at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
	at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:97)
	at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:93)
	at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:481)
	at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:82)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:481)
	at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
	at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
	at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:457)
	at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:93)
	at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:80)
	at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:78)
	at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:115)
	at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:848)
	at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:382)
	at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:349)
	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:239)
	at com.myCompany.myProject.myMethod(WriteToDisk.scala:51)

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you wonโ€™t want to miss the chance to attend and share knowledge.

If there isnโ€™t a group near you, start one and help create a community that brings people together.

Request a New Group