Unable to connect mongo with Databricks
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
04-04-2024 10:43 PM
Hello,
I am trying to connect mongo with Databricks. I also used SSL certificate.
I created my own cluster and installed maven library org.mongodb.spark:mongo-spark-connector_2.12:3.0.1.
This is my code:
connection_string =f"mongodb://{secret['user']}:{secret['password']}@{secret['host']}:{secret['port']}/?authSource={secret['database']}&tls=true&tlsCAFile=temp/CA-certificate.pem"
df = spark.read.format("com.mongodb.spark.sql.DefaultSource")\
.option("database", database)\
.option("collection", collection)\
.option("spark.mongodb.input.uri", connectionString)\
.option("ssl", "true")\
.option("sslCertificate", sslCertificateFilePath)\
.load()
When I am running above code getting below error:
Please provide me solution for this.
Thanks
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
04-05-2024 10:47 AM
@InTimetec - can you please check/list if the sslCertificate is available in the sslCertifcateFilePath mentioned above?
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
04-07-2024 09:37 PM
Yes, I verified. The path is correct.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
04-07-2024 09:34 PM
@Retired_mod I updated my code as below:
df = spark.read.format("com.mongodb.spark.sql.DefaultSource")\
.option("database", database)\
.option("collection", collection)\
.option("spark.mongodb.input.uri", connectionString)\
.option("tlsUseSystemCA","true")\
.load()
Now I am getting below error:
Error: An error occurred while calling o516.load.
: com.mongodb.MongoTimeoutException: Timed out after 30000 ms while waiting to connect. Client view of cluster state is {type=UNKNOWN, servers=[{address=a-coe-aws-mongo-db.cluster-cubeteznsgeb.us-west-2.docdb.amazonaws.com:27017, type=UNKNOWN, state=CONNECTING}]
at com.mongodb.internal.connection.BaseCluster.getDescription(BaseCluster.java:177)
at com.mongodb.internal.connection.SingleServerCluster.getDescription(SingleServerCluster.java:41)
at com.mongodb.client.internal.MongoClientDelegate.getConnectedClusterDescription(MongoClientDelegate.java:147)
at com.mongodb.client.internal.MongoClientDelegate.createClientSession(MongoClientDelegate.java:98)
at com.mongodb.client.internal.MongoClientDelegate$DelegateOperationExecutor.getClientSession(MongoClientDelegate.java:278)
at com.mongodb.client.internal.MongoClientDelegate$DelegateOperationExecutor.execute(MongoClientDelegate.java:182)
at com.mongodb.client.internal.MongoDatabaseImpl.executeCommand(MongoDatabaseImpl.java:194)
at com.mongodb.client.internal.MongoDatabaseImpl.runCommand(MongoDatabaseImpl.java:163)
at com.mongodb.client.internal.MongoDatabaseImpl.runCommand(MongoDatabaseImpl.java:158)
at com.mongodb.spark.MongoConnector.$anonfun$hasSampleAggregateOperator$1(MongoConnector.scala:234)
at com.mongodb.spark.MongoConnector.$anonfun$withDatabaseDo$1(MongoConnector.scala:171)
at com.mongodb.spark.MongoConnector.withMongoClientDo(MongoConnector.scala:154)
at com.mongodb.spark.MongoConnector.withDatabaseDo(MongoConnector.scala:171)
at com.mongodb.spark.MongoConnector.hasSampleAggregateOperator(MongoConnector.scala:234)
at com.mongodb.spark.rdd.MongoRDD.hasSampleAggregateOperator$lzycompute(MongoRDD.scala:221)
at com.mongodb.spark.rdd.MongoRDD.hasSampleAggregateOperator(MongoRDD.scala:221)
at com.mongodb.spark.sql.MongoInferSchema$.apply(MongoInferSchema.scala:68)
at com.mongodb.spark.sql.DefaultSource.constructRelation(DefaultSource.scala:97)
at com.mongodb.spark.sql.DefaultSource.createRelation(DefaultSource.scala:50)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:390)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:378)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$2(DataFrameReader.scala:334)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:334)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:226)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:397)
at py4j.Gateway.invoke(Gateway.java:306)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:199)
at py4j.ClientServerConnection.run(ClientServerConnection.java:119)
at java.lang.Thread.run(Thread.java:750)
I tried to increase timeout as well. for this I added below code.
.option("spark.mongodb.input.connectionTimeoutMs", "120000")
But still getting same error.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
04-10-2024 01:17 PM
@InTimetec - could you please check if the port 27017 is accessible from the workspace VPC network? Also, please check with your internal network team for any connectivity issues.
Per this documented observation - https://community.databricks.com/t5/data-engineering/mongodb-spark-connector-v10-x-read-error-on-dat... you can use DBR 13.3 LTS cluster for compatibility.