08-13-2021 08:27 AM
I'm calling the stored proc then store into pandas dataframe then creating list while creating list getting below error
Databricks execution failed with error state Terminated. For more details please check the run page url: path
An error occurred while calling o3036.collectToPython. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 66 in stage 11629.0 failed 4 times, most recent failure: Lost task 66.3 in stage 11629.0 (TID 421473, 10.49.20.9, executor 7): java.util.NoSuchElementException at org.apache.spark.sql.vectorized.ColumnarBatch$1.next(ColumnarBatch.java:69) at org.apache.spark.sql.vectorized.ColumnarBatch$1.next(ColumnarBatch.java:58) at scala.collection.convert.Wrappers$JIteratorWrapper.next(Wrappers.scala:44) at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$2.next(ArrowConverters.scala:214) at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$2.next(ArrowConverters.scala:195) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:733) at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.encodeUnsafeRows(UnsafeRowBatchUtils.scala:80) at org.apache.spark.sql.execution.collect.Collector.$anonfun$processPartition$1(Collector.scala:179) at org.apache.spark.SparkContext.$anonfun$runJob$6(SparkContext.scala:2433) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at org.apache.spark.scheduler.Task.doRunTask(Task.scala:144) at org.apache.spark.scheduler.Task.run(Task.scala:117) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$9(Executor.scala:640) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1581) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:643) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2519) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2466) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2460) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2460) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1152) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1152) at scala.Option.foreach(Option.scala:407) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1152) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2721) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2668) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2656) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:938) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2339) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2434) at org.apache.spark.sql.execution.collect.Collector.runSparkJobs(Collector.scala:273) at org.apache.spark.sql.execution.collect.Collector.collect(Collector.scala:308) at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:82) at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:88) at org.apache.spark.sql.execution.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:508) at org.apache.spark.sql.execution.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:480) at org.apache.spark.sql.execution.SparkPlan.executeCollectResult(SparkPlan.scala:401) at org.apache.spark.sql.Dataset.$anonfun$collectToPython$1(Dataset.scala:3497) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3709) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$5(SQLExecution.scala:116) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:249) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$1(SQLExecution.scala:101) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:845) at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:77) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:199) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3707) at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:3495) at sun.reflect.GeneratedMethodAccessor271.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380) at py4j.Gateway.invoke(Gateway.java:295) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:251) at java.lang.Thread.run(Thread.java:748) Caused by: java.util.NoSuchElementException at org.apache.spark.sql.vectorized.ColumnarBatch$1.next(ColumnarBatch.java:69) at org.apache.spark.sql.vectorized.ColumnarBatch$1.next(ColumnarBatch.java:58) at scala.collection.convert.Wrappers$JIteratorWrapper.next(Wrappers.scala:44) at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$2.next(ArrowConverters.scala:214) at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$2.next(ArrowConverters.scala:195) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:733) at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.encodeUnsafeRows(UnsafeRowBatchUtils.scala:80) at org.apache.spark.sql.execution.collect.Collector.$anonfun$processPartition$1(Collector.scala:179) at org.apache.spark.SparkContext.$anonfun$runJob$6(SparkContext.scala:2433) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at org.apache.spark.scheduler.Task.doRunTask(Task.scala:144) at org.apache.spark.scheduler.Task.run(Task.scala:117) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$9(Executor.scala:640) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1581) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:643) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ... 1 more
01-06-2022 02:37 PM
@chaitanya , could you please try disabling arrow optimization and see if this resolves the issue?
spark.sql.execution.arrow.enabled false
spark.sql.execution.arrow.pyspark.enabled false
09-02-2021 02:56 AM
Hi @ chaitanya! My name is Kaniz, and I'm a technical moderator here. Great to meet you, and thanks for your question! Let's see if your peers on the Forum have an answer to your questions first. Or else I will follow up shortly with a response.
09-20-2021 10:57 AM
Hi @chaitanya ,
Please provide more details.
Could you share the code you tried to run? what format was the source data from blob storage?
Thank you.
01-06-2022 02:37 PM
@chaitanya , could you please try disabling arrow optimization and see if this resolves the issue?
spark.sql.execution.arrow.enabled false
spark.sql.execution.arrow.pyspark.enabled false
Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.
If there isn’t a group near you, start one and help create a community that brings people together.
Request a New Group