- 1097 Views
- 0 replies
- 1 kudos
When I log a pyfunc mlflow model, it generates a page that has this helpful code for using the model in production. Make Predictions
Predict on a Spark DataFrame:
import mlflow
from pyspark.sql.functions import struct, col
logged_model = 'runs:/1d......
- 1097 Views
- 0 replies
- 1 kudos
- 4263 Views
- 3 replies
- 3 kudos
the following code...from sparkdl.xgboost import XgboostRegressorfrom pyspark.ml import Pipelineparams = {"n_estimators": 100, "learning_rate": 0.1, "max_depth": 4, "random_state": 42, "missing": 0}xgboost = XgboostRegressor(**params)pipeline = Pipel...
- 4263 Views
- 3 replies
- 3 kudos
Latest Reply
You need to choose the runtime for ML instead of the standard.
2 More Replies
- 2905 Views
- 2 replies
- 3 kudos
the following code...from pyspark.sql.functions import monotonically_increasing_id, lit, expr, randimport uuidfrom databricks import feature_storefrom pyspark.sql.types import StringType, DoubleTypefrom databricks.feature_store import feature_table, ...
- 2905 Views
- 2 replies
- 3 kudos
Latest Reply
Hope that was an easy fix - @Tobias Cortese ! Thanks for marking the "best answer"!
1 More Replies