- 8854 Views
- 4 replies
- 1 kudos
Permission denied: Lightning Logs
I'm doing parameter tuning for a NeuralProphet model (you can see in the image the parameters and code for training)When I try to parallelize the training, it gives me Permission Error.Why can't I access the folder '/databricks/spark/work/*'? Do I ne...
- 8854 Views
- 4 replies
- 1 kudos
- 1 kudos
Hi Ruben!I am facing exactly the same error running a similar approach when using runtime 16.2 ML. I didn't have this issue when using runtime 12.2 LTS ML or 13.3 ML. Did you find a solution?Many thanks!
- 1 kudos
- 2903 Views
- 1 replies
- 0 kudos
Resolved! Cluster terminated in Databricks Community Edition
I've tried to start a single cluster 4 times on Databricks Community Edition today (13 March 2022). It's failed every time. Here's the first part of the output summary.```Time2022-03-13 13:59:14 EDTMessageCluster terminated.Reason:Unexpected launch f...
- 2903 Views
- 1 replies
- 0 kudos
- 0 kudos
Hi @Noel Jameson​ We have some internal service interruptions due to which we had this issue. Our engineering has applied the fix and the cluster startup works as expected. Sincerely apologies for the inconvenience caused here.Regards,Darshan
- 0 kudos

- 2214 Views
- 2 replies
- 0 kudos
Resolved! Where is MLflow tracking server located?
Where exactly is the MLFlow Tracking Server that is managed by Databricks located? Is it provisioned on the same instances as the Databricks cluster (ie. is it part of the EC2 cluster, or is it some standalone service )?
- 2214 Views
- 2 replies
- 0 kudos
- 0 kudos
The previous answer is applicable for managed MLflow as part of Databricks Machine Learning.For Open Source MLflow please see the 4 different scenarios described in the Open Source MLflow website https://mlflow.org/docs/latest/tracking.html#how-runs...
- 0 kudos
-
Access control
3 -
Access Data
2 -
AccessKeyVault
1 -
ADB
2 -
Airflow
1 -
Amazon
2 -
Apache
1 -
Apache spark
3 -
APILimit
1 -
Artifacts
1 -
Audit
1 -
Autoloader
6 -
Autologging
2 -
Automation
2 -
Automl
32 -
AWS
7 -
Aws databricks
1 -
AWSSagemaker
1 -
Azure
32 -
Azure active directory
1 -
Azure blob storage
2 -
Azure data lake
1 -
Azure Data Lake Storage
3 -
Azure data lake store
1 -
Azure databricks
32 -
Azure event hub
1 -
Azure key vault
1 -
Azure sql database
1 -
Azure Storage
2 -
Azure synapse
1 -
Azure Unity Catalog
1 -
Azure vm
1 -
AzureML
2 -
Bar
1 -
Beta
1 -
Better Way
1 -
BI Integrations
1 -
BI Tool
1 -
Billing and Cost Management
1 -
Blob
1 -
Blog
1 -
Blog Post
1 -
Broadcast variable
1 -
Business Intelligence
1 -
CatalogDDL
1 -
Centralized Model Registry
1 -
Certification
2 -
Certification Badge
1 -
Change
1 -
Change Logs
1 -
Chatgpt
2 -
Check
2 -
Classification Model
1 -
Cloud Storage
1 -
Cluster
10 -
Cluster policy
1 -
Cluster Start
1 -
Cluster Termination
2 -
Clustering
1 -
ClusterMemory
1 -
CNN HOF
1 -
Column names
1 -
Community Edition
1 -
Community Edition Password
1 -
Community Members
1 -
Company Email
1 -
Condition
1 -
Config
1 -
Configure
3 -
Confluent Cloud
1 -
Container
2 -
ContainerServices
1 -
Control Plane
1 -
ControlPlane
1 -
Copy
1 -
Copy into
2 -
CosmosDB
1 -
Courses
2 -
Csv files
1 -
Dashboards
1 -
Data
8 -
Data Engineer Associate
1 -
Data Engineer Certification
1 -
Data Explorer
1 -
Data Ingestion
2 -
Data Ingestion & connectivity
11 -
Data Quality
1 -
Data Quality Checks
1 -
Data Science & Engineering
2 -
databricks
5 -
Databricks Academy
3 -
Databricks Account
1 -
Databricks AutoML
9 -
Databricks Cluster
3 -
Databricks Community
5 -
Databricks community edition
4 -
Databricks connect
1 -
Databricks dbfs
1 -
Databricks Feature Store
1 -
Databricks Job
1 -
Databricks Lakehouse
1 -
Databricks Mlflow
4 -
Databricks Model
2 -
Databricks notebook
10 -
Databricks ODBC
1 -
Databricks Platform
1 -
Databricks Pyspark
1 -
Databricks Python Notebook
1 -
Databricks Runtime
9 -
Databricks SQL
8 -
Databricks SQL Permission Problems
1 -
Databricks Terraform
1 -
Databricks Training
2 -
Databricks Unity Catalog
1 -
Databricks V2
1 -
Databricks version
1 -
Databricks Workflow
2 -
Databricks Workflows
1 -
Databricks workspace
2 -
Databricks-connect
1 -
DatabricksContainer
1 -
DatabricksML
6 -
Dataframe
3 -
DataSharing
1 -
Datatype
1 -
DataVersioning
1 -
Date Column
1 -
Dateadd
1 -
DB Notebook
1 -
DB Runtime
1 -
DBFS
5 -
DBFS Rest Api
1 -
Dbt
1 -
Dbu
1 -
DDL
1 -
DDP
1 -
Dear Community
1 -
DecisionTree
1 -
Deep learning
4 -
Default Location
1 -
Delete
1 -
Delt Lake
4 -
Delta
24 -
Delta lake table
1 -
Delta Live
1 -
Delta Live Tables
6 -
Delta log
1 -
Delta Sharing
3 -
Delta-lake
1 -
Deploy
1 -
DESC
1 -
Details
1 -
Dev
1 -
Devops
1 -
Df
1 -
Different Notebook
1 -
Different Parameters
1 -
DimensionTables
1 -
Directory
3 -
Disable
1 -
Distribution
1 -
DLT
6 -
DLT Pipeline
3 -
Dolly
5 -
Dolly Demo
2 -
Download
2 -
EC2
1 -
Emr
2 -
Ensemble Models
1 -
Environment Variable
1 -
Epoch
1 -
Error handling
1 -
Error log
2 -
Eventhub
1 -
Example
1 -
Experiments
4 -
External Sources
1 -
Extract
1 -
Fact Tables
1 -
Failure
2 -
Feature Lookup
2 -
Feature Store
52 -
Feature Store API
2 -
Feature Store Table
1 -
Feature Table
6 -
Feature Tables
4 -
Features
2 -
FeatureStore
2 -
File Path
2 -
File Size
1 -
Fine Tune Spark Jobs
1 -
Forecasting
2 -
Forgot Password
2 -
Garbage Collection
1 -
Garbage Collection Optimization
1 -
Github
2 -
Github actions
2 -
Github Repo
2 -
Gitlab
1 -
GKE
1 -
Global Init Script
1 -
Global init scripts
4 -
Governance
1 -
Hi
1 -
Horovod
1 -
Html
1 -
Hyperopt
4 -
Hyperparameter Tuning
2 -
Iam
1 -
Image
3 -
Image Data
1 -
Inference Setup Error
1 -
INFORMATION
1 -
Input
1 -
Insert
1 -
Instance Profile
1 -
Int
2 -
Interactive cluster
1 -
Internal error
1 -
Invalid Type Code
1 -
IP
1 -
Ipython
1 -
Ipywidgets
1 -
JDBC Connections
1 -
Jira
1 -
Job
4 -
Job Parameters
1 -
Job Runs
1 -
Join
1 -
Jsonfile
1 -
Kafka consumer
1 -
Key Management
1 -
Kinesis
1 -
Lakehouse
1 -
Large Datasets
1 -
Latest Version
1 -
Learning
1 -
Limit
3 -
LLM
3 -
LLMs
1 -
Local computer
1 -
Local Machine
1 -
Log Model
2 -
Logging
1 -
Login
1 -
Logs
1 -
Long Time
2 -
Low Latency APIs
2 -
LTS ML
3 -
Machine
3 -
Machine Learning
24 -
Machine Learning Associate
1 -
Managed Table
1 -
Max Retries
1 -
Maximum Number
1 -
Medallion Architecture
1 -
Memory
3 -
Metadata
1 -
Metrics
3 -
Microsoft azure
1 -
ML Lifecycle
4 -
ML Model
4 -
ML Practioner
3 -
ML Runtime
1 -
MlFlow
75 -
MLflow API
5 -
MLflow Artifacts
2 -
MLflow Experiment
6 -
MLflow Experiments
3 -
Mlflow Model
10 -
Mlflow registry
3 -
Mlflow Run
1 -
Mlflow Server
5 -
MLFlow Tracking Server
3 -
MLModels
2 -
Model Deployment
4 -
Model Lifecycle
6 -
Model Loading
2 -
Model Monitoring
1 -
Model registry
5 -
Model Serving
3 -
Model Serving Cluster
2 -
Model Serving REST API
6 -
Model Training
2 -
Model Tuning
1 -
Models
8 -
Module
3 -
Modulenotfounderror
1 -
MongoDB
1 -
Mount Point
1 -
Mounts
1 -
Multi
1 -
Multiline
1 -
Multiple users
1 -
Nested
1 -
New Feature
1 -
New Features
1 -
New Workspace
1 -
Nlp
3 -
Note
1 -
Notebook
6 -
Notification
2 -
Object
3 -
Onboarding
1 -
Online Feature Store Table
1 -
OOM Error
1 -
Open Source MLflow
4 -
Optimization
2 -
Optimize Command
1 -
OSS
3 -
Overwatch
1 -
Overwrite
2 -
Packages
2 -
Pandas udf
4 -
Pandas_udf
1 -
Parallel
1 -
Parallel processing
1 -
Parallel Runs
1 -
Parallelism
1 -
Parameter
2 -
PARAMETER VALUE
2 -
Partner Academy
1 -
Pending State
2 -
Performance Tuning
1 -
Photon Engine
1 -
Pickle
1 -
Pickle Files
2 -
Pip
2 -
Points
1 -
Possible
1 -
Postgres
1 -
Pricing
2 -
Primary Key
1 -
Primary Key Constraint
1 -
Progress bar
2 -
Proven Practices
2 -
Public
2 -
Pymc3 Models
2 -
PyPI
1 -
Pyspark
6 -
Python
21 -
Python API
1 -
Python Code
1 -
Python Function
3 -
Python Libraries
1 -
Python Packages
1 -
Python Project
1 -
Pytorch
3 -
Reading-excel
2 -
Redis
2 -
Region
1 -
Remote RPC Client
1 -
RESTAPI
1 -
Result
1 -
Runtime update
1 -
Sagemaker
1 -
Salesforce
1 -
SAP
1 -
Scalability
1 -
Scalable Machine
2 -
Schema evolution
1 -
Script
1 -
Search
1 -
Security
2 -
Security Exception
1 -
Self Service Notebooks
1 -
Server
1 -
Serverless
1 -
Serving
1 -
Shap
2 -
Size
1 -
Sklearn
1 -
Slow
1 -
Small Scale Experimentation
1 -
Source Table
1 -
Spark
13 -
Spark config
1 -
Spark connector
1 -
Spark Error
1 -
Spark MLlib
2 -
Spark Pandas Api
1 -
Spark ui
1 -
Spark Version
2 -
Spark-submit
1 -
SparkML Models
2 -
Sparknlp
3 -
Spot
1 -
SQL
19 -
SQL Editor
1 -
SQL Queries
1 -
SQL Visualizations
1 -
Stage failure
2 -
Storage
3 -
Stream
2 -
Stream Data
1 -
Structtype
1 -
Structured streaming
2 -
Study Material
1 -
Summit23
2 -
Support
1 -
Support Team
1 -
Synapse
1 -
Synapse ML
1 -
Table
4 -
Table access control
1 -
Tableau
1 -
Task
1 -
Temporary View
1 -
Tensor flow
1 -
Test
1 -
Timeseries
1 -
Timestamps
1 -
TODAY
1 -
Training
6 -
Transaction Log
1 -
Trying
1 -
Tuning
2 -
UAT
1 -
Ui
1 -
Unexpected Error
1 -
Unity Catalog
12 -
Use Case
2 -
Use cases
1 -
Uuid
1 -
Validate ML Model
2 -
Values
1 -
Variable
1 -
Vector
1 -
Versioncontrol
1 -
Visualization
2 -
Web App Azure Databricks
1 -
Weekly Release Notes
2 -
Whl
1 -
Worker Nodes
1 -
Workflow
2 -
Workflow Jobs
1 -
Workspace
2 -
Write
1 -
Writing
1 -
Z-ordering
1 -
Zorder
1
- « Previous
- Next »