โ07-19-2023 05:15 AM
I have been trying to log mlflow model but seems to be not working. It logs only the last(which is also the worst run).
#-------------------------------------------------------13.0 ML XGBOost-------------------------------------------------------------------------
#train_df=train_df.limit(188123)
from hyperopt import fmin, tpe, Trials, hp
import numpy as np
import mlflow
import mlflow.spark
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml import Pipeline
from xgboost.spark import SparkXGBRegressor
from pyspark.ml.evaluation import RegressionEvaluator
import numpy as np
from mlflow.models.signature import infer_signature
#vec_assembler = VectorAssembler(inputCols=train_df.columns[1:], outputCol="features")
xgb = SparkXGBRegressor(num_workers=1, label_col="price", missing=0.0)
# pipeline = Pipeline(stages=[vec_assembler, xgb])
pipeline = Pipeline(stages=[ordinal_encoder, vec_assembler, xgb])
regression_evaluator = RegressionEvaluator(predictionCol="prediction", labelCol="price")
def objective_function(params):
# set the hyperparameters that we want to tune
max_depth = params["max_depth"]
n_estimators = params["n_estimators"]
with mlflow.start_run(nested=True):
estimator = pipeline.copy({xgb.max_depth: max_depth, xgb.n_estimators: n_estimators})
model = estimator.fit(train_df)
preds = model.transform(test_df)
rmse = regression_evaluator.evaluate(preds)
#r2 = regression_evaluator.setMetricName("r2").evaluate(preds)
mlflow.log_metric("rmse", rmse)
#mlflow.log_metric("r2", r2)
return rmse
search_space = {
"max_depth" : hp.choice('max_depth', np.arange(12, 15, dtype=int)),
"n_estimators": hp.choice('n_estimators', np.arange(50, 80, dtype=int))
}
mlflow.pyspark.ml.autolog(log_models=True,log_datasets=False)
#mlflow.sklearn.autolog(log_models=False,log_datasets=False)
#mlflow.xgboost.autolog(log_models=True)
#mlflow.transformers.autolog(log_models=False)
num_evals = 1
trials = Trials()
best_hyperparam = fmin(fn=objective_function,
space=search_space,
algo=tpe.suggest,
max_evals=num_evals,
trials=trials,
rstate=np.random.default_rng(42))
# Retrain model on train & validation dataset and evaluate on test dataset
with mlflow.start_run():
best_max_depth = best_hyperparam["max_depth"]
best_n_estimators = best_hyperparam["n_estimators"]
estimator = pipeline.copy({xgb.max_depth: best_max_depth, xgb.n_estimators: best_n_estimators})
#combined_df = train_df.union(test_df) # Combine train & validation together
pipeline_model = estimator.fit(train_df)
pred_df = pipeline_model.transform(test_df)
#signature = infer_signature(test_df, pred_df)
rmse = regression_evaluator.evaluate(pred_df)
r2 = regression_evaluator.setMetricName("r2").evaluate(pred_df)
# Log param and metrics for the final model
mlflow.log_param("maxdepth", best_max_depth)
mlflow.log_param("n_estimators", best_n_estimators)
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("r2", r2)
# mlflow.transformers.log_model(pipeline_model,"model",input_example=test_df.select(old_cols_list).limit(1).toPandas())
mlflow.spark.log_model(pipeline_model ,"model",input_example=test_df.select(old_cols_list).limit(1).toPandas())
#mlflow.xgboost.log_model(pipeline_model,"model",input_example=test_df.select(old_cols_list).limit(1).toPandas())
# mlflow.sklearn.log_model(pipeline_model,"model",input_example=test_df.select(old_cols_list).limit(1).toPandas())
โ07-21-2023 12:45 PM
Hi @raghagra,
Thank you for posting your question in the Databricks community.
The reason why the code is only logging the last run is because you are using the mlflow.start_run() function inside the objective_function() function. This means that each time you call the objective_function() function, it will start a new run. The mlflow.spark.log_model() function only logs the model for the current run, so the model will only be logged for the last run.
To fix this, you can move the mlflow.start_run() function outside of the objective_function() function. This will ensure that the model is logged for every run.
Please check how it works.
โ07-22-2023 04:40 AM
@Kumaran Still did not work. getting the below error:
2023/07/22 11:30:21 INFO mlflow.spark: Inferring pip requirements by reloading the logged model from the databricks artifact repository, which can be time-consuming. To speed up, explicitly specify the conda_env or pip_requirements when calling log_model(). 2023/07/22 11:31:02 WARNING mlflow.utils.environment: Encountered an unexpected error while inferring pip requirements (model URI: dbfs:/databricks/mlflow-tracking/590967242928602/e3bd64c64535425192a510bd4ee66dec/artifacts/xgb_model/sparkml, flavor: spark), fall back to return ['pyspark==3.4.0']. Set logging level to DEBUG to see the full traceback. /databricks/python/lib/python3.10/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils. warnings.warn("Setuptools is replacing distutils.")
โ07-24-2023 12:55 AM
Hi @raghagra,
Can you try the following code instead (please modify according to your need) to log the model:
import mlflow with mlflow.start_run(experiment_id="1234") as run: mlflow.set_tag("status", "started") mlflow.log_param("git_hash", "1234") mlflow.log_param("env", "stg") mlflow.log_param("pipeline_id", "es_s3_to_raw") run_id = run.info.run_uuid mlflow.log_param("run_id", run_id) mlflow.set_tag("run_url", "URL of your model") mlflow.log_param("id_in_job", "1726769") mlflow.log_param("context.user", "your email id")
โ07-31-2023 03:23 AM
@Kumaran Ran this code, but any specific log that I should be looking for?
Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you wonโt want to miss the chance to attend and share knowledge.
If there isnโt a group near you, start one and help create a community that brings people together.
Request a New Group