

Welcome

Advanced Data Engineering with Databricks

©2022 Databricks Inc. – All rights reserved

Learning Objectives

- 1. Design databases and pipelines optimized for the Databricks Lakehouse Platform.
- 2. Implement efficient incremental data processing to validate and enrich data driving business decisions and applications.
- 3. Leverage Databricks-native features for managing access to sensitive data and fulfilling right-to-be-forgotten requests.
- 4. Manage error troubleshooting, code promotion, task orchestration, and production job monitoring using Databricks tools.

Lecture TA Help + Discussion

Lab Notebooks

Breakout Resources

Rooms

Solutions

Modules

- 1. Architecting for the Lakehouse
- 2. Bronze Ingestion Patterns
- 3. <u>Promoting to Silver</u>
- 4. Gold Query Layer
- 5. <u>Storing Data Securely</u>
- 6. <u>Propagating Updates and Deletes</u>
- 7. Orchestration and Scheduling

@2022 Databriaka kao All rishta reason ad

©2022 Databricks Inc. — All rights reserved

Welcome!

Let's get to know you

- Name
- Role and team
- Length of experience with Spark and Databricks
- Motivation for attending
- Fun fact or favorite mobile app

Course Objective Design and implement a multi-pipeline multi-hop architecture to enable the Lakehouse paradigm.

Our Company Machine Streaming BI Data Analytics Learning Science moovio ≣ 0. D Structured, Semi-Structured and Unstructured Data

Architecting for the Lakehouse

Adopting the Lakehouse Architecture Lakehouse Medallion Architecture Streaming Design Patterns

Adopting the Lakehouse Architecture

Data Lake

_akehouse

One platform to unify all of your data, analytics, and Al workloads Data

Warehouse

The Databricks Lakehouse Platform

Unstructured, semi-structured, structured, and streaming data

Data Lake

DELTA LAKE

An open approach to bringing data management and governance to data lakes

Better reliability with transactions 48x faster data processing with indexing Data governance at scale with fine-grained access control lists Data

Warehouse

Delta Lake brings ACID to object storage

- Atomicity
- Consistency
- Isolation
- Durability

Delta Lake provides ACID guarantees scoped to tables

Problems solved by ACID transactions in Delta

- 1. Hard to append data
- 2. Modification of existing data difficult
- 3. Jobs failing mid way
- 4. Real-time operations hard
- 5. Costly to keep historical data versions

The Lakehouse Medallion Architecture

Multi-hop Pipeline

Source:

Files or integrated systems

Bronze:

Raw data and metadata

Silver:

Validated data with atomic grain

Gold:

Refined, aggregated data

Bronze Layer

Why is the Bronze Layer Important?

- Bronze layer replaces the traditional data lake
- Represents the full, unprocessed history of the data
- Captures the provenance (what, when, and from where) of data loaded into the lakehouse
- Data is stored efficiently using Delta Lake
- If downstream layers discover later they need to ingest more, they can come back to the Bronze source to obtain it.

Bronze Layer Guiding Principles

- The goal of this layer is data capture and provenance:
 - Capture exactly what is ingested, without parsing or change.
- Typically a Delta Lake table with these fields in each row:
 - Date received/ingested
 - Data source (filename, external system, etc)
 - Text field with raw unparsed JSON, CSV, or other data
 - Other metadata
- Should be append only (batch or streaming)
- Plan ahead if data must be deleted for regulatory purposes

Processing Deletes

- Retain all records when possible
- Soft-deletes if necessary
- Hard-deletes may be required by regulatory processes

Silver Layer

Why is the Silver Layer important?

- Easier to query than the non-curated Bronze "data lake"
 - Data is clean
 - Transactions have ACID guarantees
- Represents the "Enterprise Data Model"
- Captures the full history of business action modeled
 - Each record processed is preserved
 - All records can be efficiently queried
- Reduces data storage complexity, latency, and redundancy
 - Built for both ETL throughput AND analytic query performance

Silver Layer Guiding Principles

- Uses Delta Lake tables (with SQL table names)
- Preserves grain of original data (no aggregation)
- Eliminates duplicate records
- Production schema enforced
- Data quality checks passed
- Corrupt data quarantined
- Data stored to support production workloads
- Optimized for long-term retention and ad-hoc queries

Gold Layer

Why is the Gold Layer important?

- Powers ML applications, reporting, dashboards, ad hoc analytics
- Reduces costs associated with ad hoc queries on silver tables
- Allows fine grained permissions
- Reduces strain on production systems
- Shifts query updates to production workloads

Notebook

Streaming Design Patterns

Bronze Ingestion Patterns

Bronze Ingestion Patterns Auto Load to Multiplex Bronze Streaming from Multiplex Bronze

©2022 Databricks Inc. – All rights reserved

Bronze Ingestion Patterns

Singleplex Ingestion

Multiplex Ingestion

Don't Use Kafka as Bronze

- Data retention limited by Kafka; expensive to keep full history
- All processing happens on ingest
- If stream gets too far behind, data is lost
- Cannot recover data (no history to replay)

Delta Lake Bronze

Notebook

Auto Load to Multiplex Bronze

Notebook

Streaming from Multiplex Bronze

Promoting to Silver

Streaming Deduplication Quality Enforcement Slowly Changing Dimensions Streaming Joins and Statefulness

Promoting Bronze to Silver

Silver Layer Objectives

- Validate data quality and schema
- Enrich and transform data
- Optimize data layout and storage for downstream queries
- Provide single source of truth for analytics

Schema Enforcement & Evolution

- Enforcement prevents bad records from entering table
 - Mismatch in type or field name
- Evolution allows new fields to be added
 - Useful when schema changes in production/new fields added to nested data
 - **Cannot** use evolution to remove fields
 - All previous records will show newly added field as Null
 - For previously written records, the underlying file isn't modified.
 - The additional field is simply defined in the metadata and dynamically read as null

Delta Lake Constraints

- Check NOT NULL or arbitrary boolean condition
- Throws exception on failure

ALTER TABLE tableName ADD CONSTRAINT constraintName
 CHECK heartRate >= 0;

Alternative Quality Check Approaches

- Add a "validation" field that captures any validation errors and a null value means validation passed.
- Quarantine data by filtering non-compliant data to alternate location
- Warn without failing by writing additional fields with constraint check results to Delta tables

Notebook

Streaming Deduplication

Notebook

Quality Enforcement

Lab

Promoting to Silver

Slowly Changing Dimensions in the Lakehouse

Fact Tables as Incremental Data

- Often is a time series
- No intermediate aggregations
- No overwrite/update/delete operations
- Append-only operations

Using Dimension Tables in Incremental Updates

- Delta Lake enables stream-static joins
- Each micro-batch captures the most recent state of joined Delta table
- Allows modification of dimension while maintaining downstream composability

Slowly Changing Dimensions (SCD)

• Type O: No changes allowed (static/append only)

E.g. static lookup table

• Type 1: Overwrite (no history retained)

E.g. do not care about historic comparisons other than quite recent (use Delta Time Travel)

 Type 2: Adding a new row for each change and marking the old as obsolete

E.g. Able to record product price changes over time, integral to business logic.

Type O and Type 1

user_id	street	name
1	123 Oak Ave	Sam
2	99 Jump St	Abhi
3	1000 Rodeo Dr	Kasey

user_id	street	name	valid_from	current
1	123 Oak Ave	Sam	2020-01-01	true
2	99 Jump St	Abhi	2020-01-01	false
3	1000 Rodeo Dr	Kasey	2020-01-01	false
2	430 River Rd	Abhi	2021-10-10	true
3	1000 Rodeo Dr	Casey	2021-10-10	true

Applying SCD Principles to Facts

- Fact table usually append-only (Type O)
- Can leverage event and processing times for append-only history

order_id	user_id	occurred_at	action	processed_time
123	1	2021-10-01 10:05:00	ORDER_CANCELLED	2021-10-01 10:05:30
123	1	2021-10-01 10:00:00	ORDER_PLACED	2021-10-01 10:06:30

Notebook

Type 2 SCD

Streaming Joins and Statefulness

©2022 Databricks Inc. – All rights reserved

The Components of a Stateful Stream

Output Modes

Mode	When Stateful Results Materialize
Append (default)	Only materialize after watermark + lateness passed
Complete	Materialize every trigger, outputs complete table
Update	Materialize every trigger, outputs only new values

Statefulness vs. Query Progress

- Many operations as specifically stateful (stream-stream joins, deduplication, aggregation)
- Some operations just need to store incremental query progress and are not stateful (appends with simple transformations, stream-static joins, merge)
- Progress and state are stored in checkpoints and managed by driver during query processing

Managing Stream Parameters

GOAL: Balance parameters for sustainable, optimized throughput

- Input Parameters
 - Control amount of data in each micro-batch
- State Parameters
 - Control amount of data required to calculate query results
- Output Parameters
 - Control number and size of files written

Reasoning about Stream Dimensions

(records in mini-batch)

Input Parameters

Limiting the input dimension

mini-batch)

Why are input parameters important?

- Allows you to control the mini-batch size
- Defaults are large
 - Delta Lake: 1000 files per micro-batch
 - Pub/Sub & files: No limit to input batch size
- Optimal mini-batch size \rightarrow Optimal cluster usage
- Suboptimal mini-batch size \rightarrow performance cliff
 - Shuffle Spill

Per Trigger Settings

- File Source
 - maxFilesPerTrigger
- Delta Lake and Auto Loader
 - maxFilesPerTrigger
 - maxBytesPerTrigger
- Kafka
 - maxOffsetsPerTrigger

Shuffle Partitions with Structured Streaming

- Should match the number of cores in the largest cluster size that might be used in production
 - Number of shuffle partitions == max parallelism
- Cannot be changed without new checkpoint
 - Will lose query progress and state information
- Higher shuffle partitions == more files written
- Best practice: use Delta Live Tables for streaming jobs with variable volume

Tuning maxFilesPerTrigger

Base it on shuffle partition size

- Rule of thumb 1: Optimal shuffle partition size ~100-200 MB
- Rule of thumb 2: Set shuffle partitions equal to # of cores
- Use Spark UI to tune maxFilesPerTrigger until you get ~100-200 MB per partition
- Note: Size on disk is **not** a good proxy for size in memory
 - Reason is that file size is different from the size in cluster memory

State Parameters

Limiting the state dimension

⁽records in mini-batch)

Limiting the state dimension

Why are state parameters important?

- Optimal parameters → Optimal cluster usage
- If not controlled, state explosion can occur
 - Slower stream performance over time
 - Heavy shuffle spill (Joins/Merge)
 - Out of memory errors (State Store backed operations)

Example Query

- Static Delta Lake table used in stream-static join
- State Store-backed windowed stateful aggregation

```
1. Main input stream
```

```
salesSDF = (
   spark
    .readStream
   .format("delta")
   .table("sales")
)
```

2. Join item category lookup

```
itemSalesSDF = (
   salesSDF
   .join( spark.table("items"), "item_id")
)
```

3. Aggregate sales per item per hour

State Store Parameters

- Watermarking
 - How much history to compare against
- · Granularity
 - The more granular the aggregate key / window, the more state
- State store backend
 - RocksDB / Default

Stream-Static Join & Merge

- Join driven by streaming data
- Join triggers shuffle
- Join itself is stateless
- Control state information with predicate
- Goal is to broadcast static table to streaming data
- Broadcasting puts all data on each node

1. Main input stream

```
salesSDF = (
   spark
    .readStream
   .format("delta")
   .table("sales")
)
```

2. Join item category lookup

```
itemSalesSDF = (
   salesSDF
   .join(
      spark.table("items")
      .filter("category='Food'), # Predicate
      on=["item_id"]
   )
)
```
Output Parameters

Limiting the output dimension

(records in mini-batch)

Why are output parameters important?

- Streaming jobs tend to create many small files
 - Reading a folder with many small files is slow
 - Poor performance for downstream jobs, self-joins, and merge
- Output type can impact state information retained
- Merge statements with full table scans increase state

Delta Lake Output Optimizations

- Optimized Writes
- Auto Compaction
- delta.tuneFileSizesForRewrites
- Insert-only merge

Notebook

Stream Static Joins

Gold Query Layer

Making Data Available for Analytics Stored Views Materialized Gold Tables

Lakehouse and the Query Layer

©2022 Databricks Inc. – All rights reserved

What is the Query Layer?

- Stores refined datasets for use by data scientists
- Serves results for pre-computed ML models
- Contains enriched, aggregated views for use by analysts
- Star-schemas and data marts for BI queries
- Powers data-driven applications, dashboards, and reports

Also called the serving layer; gold tables exist at this level.

Tables and Views in the Query Layer

- Gold tables
- Saved views
- Databricks SQL saved queries
- Tables in RDS/NoSQL database

Gold Tables

- Refined, typically aggregated views of data saved using Delta Lake
- Can be updated with batch or stream processing
- Configured and scheduled as part of ETL workloads
- Results computed on write
- Read is simple deserialization; additional filters can be applied with pushdowns

Saved Views

- Views can be registered to databases and made available to users using ACLs
- Views are logical queries against source tables
- Logic is executed each time a view is queried
- Views registered against Delta tables will always query the most current valid version of the table

Databricks SQL Saved Queries

- Similar to saved views in when logic is executed
- Auto-detect changes in upstream Delta tables
- Uses new feature Query Result Cache
- Caching allows reviewing dashboards and downloading CSVs without an active SQL endpoint
- Easy to identify data sources (SQL present in saved query)
- Can be scheduled using Databricks SQL functionality
- Can automatically refresh Databricks SQL dashboards

Databricks SQL Endpoints

- Clusters optimized for SQL queries
- Serverless option for quick cluster startup and autoscaling
- Photon-enabled for vectorized execution
- Enhanced throughput for exchanging data with external SQL systems
- Optimized connectors for popular BI tools

Tables in External Systems

- Many downstream applications may require refined data in a different system
 - NoSQL databases
 - RDS
 - Pub/sub messaging
- Must decide where single source of truth lives

• Use saved views when filtering silver tables

```
CREATE VIEW sales_florida_2020 AS
SELECT *
FROM sales
WHERE state = 'FL' and year = 2020;
```

• Use Delta tables for common partial aggregates

```
CREATE TABLE store_item_sales AS
SELECT store_id, item_id, department, date,
    city, state, region, country,
    SUM(quantity) AS items_sold,
    SUM(price) AS revenue
FROM sales
    INNER JOIN stores ON sales.store_id = stores.store_id
    INNER JOIN items ON sales.item_id = items.item_id
GROUP BY store_id, item_id, department, date,
    city, state, region, country
```

• Share Databricks SQL queries and dashboards within teams

```
SELECT date, hour, SUM(quantity * price) hourly_sales
FROM sales
WHERE store_id = 42
AND date > date_sub(current_date(), 14)
GROUP BY date, hour;
```

• Create views with column aliases

```
CREATE VIEW sales_marketing AS
SELECT
id cust_id,
date deal_date,
total sale_amount
FROM sales;
```

- Analyze query history to identify new candidate gold tables
 - Admins can access Databricks SQL query history
 - Running analytics against query history can help identify
 - Queries that are long-running
 - Queries that are run regularly
 - Queries that use common datasets
- Transitioning these queries to gold tables and scheduling as engineering jobs may reduce total operating costs
- Query history can also be useful for identifying predicates used most frequently; useful for ZORDER indexing during optimization

Notebook

Stored Views

Notebook

Materialized Gold Tables

Storing Data Securely

PII & Regulatory Compliance Storing PII Securely Granting Privileged Access to PII

PII & Regulatory Compliance

Regulatory Compliance

- EU = GDPR (General Data Protection Regulation)
- US = CCPA (California Consumer Privacy Act)
- Simplified Compliance Requirements
 - Inform customers what personal information is collected
 - Delete, update, or export personal information as requested
 - Process request in a timely fashion (30 days)

How Lakehouse Simplifies Compliance

- Reduce copies of your PII
- Find personal information quickly
- Reliably change, delete, or export data
- Use transaction logs for auditing

Manage Access to PII

- Control access to storage locations with cloud permissions
- Limit human access to raw data
- Pseudonymize records on ingestion
- Use table ACLs to manage user permissions
- Configure dynamic views for data redaction
- Remove identifying details from demographic views

Pseudonymization

Pseudonymization

- Switches original data point with pseudonym for later re-identification
- Only authorized users will have access to keys/hash/table for re-identification
- Protects datasets on record level for machine learning
- A pseudonym is still considered to be personal data according to the GDPR

Hashing

- Apply SHA or other hash to all PII
- Add random string "salt" to values before hashing
- Databricks secrets can be leveraged for obfuscating salt value
- Leads to some increase in data size
- Some operations will be less efficient

Tokenization

- Converts all PII to keys
- Values are stored in a secure lookup table
- Slow to write, but fast to read
- De-identified data stored in fewer bytes

Tokenization

GDPR with vault

GDPR without vault

Vault-based systems might be difficult to build, but without it coping with GDPR Data Erasure Requests might be, in fact, more difficult

versus

Anonymization

Anonymization

- Protects entire tables, databases or entire data catalogues mostly for Business Intelligence
- Personal data is irreversibly altered in such a way that a data subject can no longer be identified directly or indirectly
- Usually a combination of more than one technique used in real-world scenarios

Data Suppression

- Exclude columns with PII from views
- Remove rows where demographic groups are too small
- Use dynamic access controls to provide conditional access to full data

Generalization

- Categorical generalization
- Binning
- Truncating IP addresses
- Rounding
Categorical Generalization

- Removes precision from data
- Move from specific categories to mor
- Retain level of specificity that still pro

Binning

- Identify meaningful divisions in data and group on boundaries
- Allows access to demographic groups without being able to identify individual PII
- Can use domain expertise to identify groups of interest

Truncating IP addresses

- Rounding IP address to /24 CIDR
- Replace last byte with O
- Generalizes IP geolocation to city or neighbourhood level

<u></u>	
1	<pre>import spark</pre>
2	val df = Seq("10.130.176.215", "10.5.56.45",
3	"10.208.126.183", "10.10.14.84",
4	"10.106.62.87", "10.190.48.173",
5	"10.141.100.19", "10.153.248.211",
6	"10.121.140.220", "10.37.240.84").toDF
7	.withColumn("ip_truncated",
8	<pre>concat(substring_index('value, ".", 3), lit(".0/24")))</pre>
9	display(df)

	value 🔺	ip_truncated
1	10.130.176.215	10.130.176.0/24
2	10.5.56.45	10.5.56.0/24
3	10.208.126.183	10.208.126.0/24
4	10.10.14.84	10.10.14.0/24
5	10.106.62.87	10.106.62.0/24
6	10.190.48.173	10.190.48.0/24
7	10.141.100.19	10.141.100.0/24

Rounding

- Apply generalized rounding rules to all number data, based on required precision for analytics
- Provides gross estimates without specific values
- Example:
 - Integers are rounded to multiples of 5
 - Values less than 2.5 are rounded to 0 or omitted from reports
 - Consider suppressing outliers

Creating a Pseudonymized PII Lookup Table

Storing PII Securely

Managing ACLs for the Enterprise Lakehouse

Challenges with Analytics in the Data Lake

- Difficult to provide access on need-to-know basis
- Unclear governance & ownership of data assets
- Data proliferation resulting in possible compliance issues
- Difficult to ensure integrity of data and reporting

The Goal

Provide access to valuable data to users across the company in a secure manner.

Ensure users are only able to access the data they're entitled to.

Detect whether any data has been altered or manipulated.

Grant Access to Production Datasets

Assumptions

- End-users need read-only access
- Datasets organized by database

GRANT USAGE, SELECT, READ_METADATA ON DATABASE hr TO Alternative, grant access on specific tables:

GRANT USAGE ON DATABASE hr TO `HR`; GRANT SELECT, READ_METADATA ON TABLE employees TO `HR`; GRANT SELECT, READ_METADATA ON TABLE addresses TO `HR`;

Enable Secure Data Sharing

Assumptions

- Teams/depts need a private area to collaborate in
- Datasets must not be shared outside team/dept
- New tables are not automatically shared to other members

GRANT USAGE, CREATE ON DATABASE project_data TO `Data Analysts`;

Alternatively, members automatically see all new tables:

```
GRANT USAGE, SELECT, READ_METADATA, CREATE ON DATABASE
project_data TO `Data Analysts`;
```

Enable Private User Sandboxes

Assumptions

- Users need a private area to store derivative datasets
- Datasets must not be shared with other users

GRANT USAGE, CREATE ON DATABASE user1 TO `user1@databricks.com`;

Delegate Administration of Access Policies

Assumptions

- Need to delegate management of ACLs to data stewards/owners
- Monitor using SQL Analytics query logs and/or workspace audit logs

ALTER DATABASE hr OWNER TO `HR Admins`;

Delegate Database Creation to Trusted Users

Assumptions

- Delegate database creation to trusted users
- Database creators manage ACLs
- Monitor grants using SQL Analytics query logs and/or workspace audit logs

GRANT CREATE ON CATALOG TO `Data Admins`;

Give All Users Read-Only Access To All Datasets

Assumptions

- Simple security model where all users have same level of access
- All new datasets are automatically accessible

GRANT USAGE, SELECT, READ_METADATA ON CATALOG TO `users`;

Dynamic Views on Databricks

- Need to redact fields based on user's identity
- Do not give access to underlying table, only view
- Uses existing group membership to filter rows or columns

Rollout Plan

- SCIM provisioning with groups
- Identify & classify initial set of datasets
- Register in new workspace and apply ACLs
- For Fine-Grained
 - Define access policies (e.g. "Sales only see their own accounts...", "Support technicians can only see accounts within their region", etc.)
 - Identify missing attributes needed for dynamic views
- Lifecycle policy for derivative datasets
- Define process to "promote" new or derivative datasets
 - Need to classify data & define access policies
 - Legal & compliance review

Deidentified PII Access

Propagating Updates and Deletes

Processing Records from Change Data Feed Deleting Data in the Lakehouse

Propagating Changes with Delta Change Data Feed

Multi-Hop in the Lakehouse

What is Stream Composability?

- Structured Streaming expects append-only sources
- Delta tables are composable if new streams can be initiated from them

Operations that break stream composability

- Complete aggregations
- Delete
- UPDATE/MERGE

Data is changed in place, breaking append-only expectations

Workarounds for Deleting Data

ignoreChanges

Allows deletion of full partitions

No new data files are written with full partition removal

ignoreDeletes

Allows stream to be executed against Delta table with upstream changes

Must implement logic to avoid processing duplicate records

Subsumes ignoreDeletes

What Delta Change Data Feed Does for You

Improve ETL pipelines

Process less data during ETL to increase efficiency of your pipelines

Unify batch and streaming

Common change format for batch and streaming updates, appends, and deletes

Bl on your data lake

Incrementally update the data supporting your BI tool of choice

Meet regulatory needs

Full history available of changes made to the data, including deleted information

Delta Change Data Feed

Where Delta Change Data Feed Applies

How Does Delta Change Data Feed Work?

Change Data Feed Output

A1 record did not receive an update or delete. So it will not be output by CDF.

Processing Records from Change Data Feed

Propagating Deletes with Change Data Feed

Deleting at Partition Boundaries

Orchestration and Scheduling

Multi–Task Jobs Promoting Code with Repos CLI and REST API Deploying Workloads

©2022 Databricks Inc. – All rights reserved

Orchestration and Scheduling with Multi-Task Jobs

Orchestration with Multi-Task Jobs

Parallel

Jobs revisited

Common Jobs Patterns

Sequence

Sequence

- Data transformation/ processing/cleaning
- Bronze/Silver/Gold

Funnel

Funnel

- Multiple data sources
- Data collection

Fan-out

Fan-out, star pattern

- Single data source
- Data ingestion and distribution

Demo

Creating a Multi-Task Job

Jobs UI Lab

* Make sure to use a **different** cluster for Tasks #2 & #3

* Add the parameter "**name**" with some value (e.g. your name)

- * Make sure to use the **same** cluster for Tasks #5, #6 & #7
- * After running once with the error, update Task-6 to pass

©2022 Databricks Inc. – All rights reserved

Promoting Code with Databricks Repos

Enterprise Readiness

Admin Console | Workspace Settings

Import a Git Repo

https://github.com/databricks-academy/cli-demo

©2022 Databricks Inc. – All rights reserved

Lab

Orchestration with the Databricks CLI

Lab

Using the Databricks REST API

Lab

Deploying Batch and Streaming Workloads

