
Introduction:  

In the age of cloud computing, where data reigns supreme, ensuring data quality has never 
been more critical. Time series data, with its dynamic nature and diverse applications, 
demands special attention in cloud-based environments. In this blog post, we explore a 
Data Quality Management Framework tailored for time series data in the cloud,applied 
here to the UCI Air Quality dataset. 

Motivation:  

Our Data Quality Assessment and Improvement Framework for time series data emerged 
from the need to address data reliability challenges effectively. Time series data 
underpins crucial decisions in today's data-driven landscape. To ensure its accuracy, 
consistency, and completeness, we recognized the necessity for a specialized toolset. Our 
motivation is to provide data professionals with a user-friendly solution that not only 
detects issues but actively enhances data quality. By simplifying the process, we aim to 
make high-quality time series data accessible to all, fostering data-driven excellence 
across industries.  

Framework Overview 
At its core, the DataQuality framework comprises two essential components: the Checker 
and the Improver. These components work together to comprehensively assess data quality 
and enact meaningful improvements.  

 
Figure 1 : Framework Overview 

• Checker: The Checker component comprises a wide range of functions to inspect data 
for inconsistencies, missing values, outliers, and other quality-related issues. With its 
ability to analyze large datasets swiftly, the Checker ensures that your data meets the 
highest standards.  
Here's a brief overview of its key features:  



1. Completeness Assessment: It helps identify missing values within the dataset, providing 
insights into the extent of missing data. To do this, the framework calculates the number 
of missing values for each day, allowing users to see how complete or incomplete the data 
is on a daily basis. Moreover, it goes beyond just counting missing values; it also identifies 
periods where data coverage is notably poor. These 'poor coverage' periods are flagged , 
providing a clear indication of when the data may be less reliable. 

2. Skewness Calculation: This class calculates skewness for numeric columns, aiding in 
understanding data distribution.  
3. Bias Detection: It quantifies bias within a target column, ensuring data fairness and 
accuracy. 
4. Stationarity Check: It assesses the stationarity of numeric columns, crucial for 
selecting appropriate time series analysis methods.  
5. Time Shift Analysis: The class calculates time data reigns supreme for columns of 
interest, revealing temporal relationships between variables.  

• Improver: Where the Checker identifies areas for improvement, the Improver component 
steps in to elevate your data quality. Unlike conventional solutions that offer only basic 
fixes, the Improver class provides a set of advanced options. For instance, when addressing 
missing values, you're not limited to simple imputation methods; you have the flexibility to 
choose from a range of techniques, including machine learning-based imputation models. 
This empowers to tailor data quality improvements according to specific needs.  

1. Count Missing Values: It allows users to determine the number of missing values in the 
dataset. It's essential for understanding data completeness.  
2. Impute Missing Values: This function offers various methods for imputing missing values 
in the dataset. It includes techniques like forward/backward filling 
(impute_forward_back_fill), linear interpolation (impute_linear_interpolation), and seasonal 
decomposition (impute_seasonal_decomposition). These methods help in replacing missing 
data with meaningful estimates. 
3. Plot Air Quality Data: The plot_air_quality_data method assists in visualizing air quality 
data. Users can specify the timestamp and column name to plot. Additionally, it allows 
overlaying imputed and resampled data for comparison, aiding in data analysis and 
visualization.  
4. Align Frequencies: The align_frequencies method is useful for aligning the frequencies 
of timestamped data. Users can specify the timestamp column, value column, and target 
frequency to resample the data. This feature is handy for ensuring data consistency.  
5. Handle Duplicates: The handle_duplicates method helps identify and remove 
duplicate rows in the dataset, ensuring data integrity.  
6. Smooth Outliers: The smooth_outliers method identifies outliers in numeric columns and 
smoothes the data by applying a moving average. This feature aids in handling noisy data.  
7. Improve Stationarity: The improve_stationarity method supports making data 
stationary by differencing non-stationary time series data. This is crucial for time 
series analysis and modeling.  
8. Improve Time Shifts: The improve_time_shifts method analyzes time shifts in a target 
column, helping users discover temporal relationships between variables. It automatically 



corrects time shifts by interpolating data.  
 
These quality scores and insights are presented on a user-friendly dashboard, empowering 
data professionals to make informed decisions and ensuring data-driven excellence across 
industries.  
 
Fig 3: The Air Quality Data Quality Dashboard provides two key metrics when selecting 
specific columns of interest - the overall normalized consistency score and the overall 
normalized relevancy score. 
 
 
 

 
Figure 3 : Overall consistency and Relevancy score 

Figure 2 : Dashboard Overview 

 
 
Fig 2: By clicking the "Update Overall Consistency" button on the Air Quality Data Quality 
Dashboard, users can access a comprehensive overview of important data quality indicators. 
This includes information on missing data points, which currently stands at 20,652, 
indicating a data completeness level of 87.17%. The skewness of individual columns like 
CO(GT), PT08.S1(CO), and NMHC(GT) is also provided, giving insights into the distribution of 
the data. Moreover, users can determine the stationarity status of these columns, with most 
being found to be stationary. This ensures that the data is reliable for further analytical 
processes. With this complete snapshot, users can confidently evaluate the quality of their 
time series data and make informed decisions accordingly. 
 
 
 
 
 



The created framework when put to test on the UCI Air quality dataset yielded the following 
results. The data had a 87.17% complteness rate before improvement and 99.93% 
completeness rate after. The missing count of the data identified as 20652 was later filled 
with imputation methods in the Improver class.Using check_missing_data(), temporal 
analysis revealed days with low coverage, such as "2004-03-11 were identified." Statistical 
analysis such as skewness showed that columns CO(GT), PT08.S1(CO), C6H6(GT), 
PT08.S2(NMHC), PT08.S3(NOx), NO2(GT), PT08.S4(NO2), PT08.S5(O3), T, RH, and AH all 
exhibit negative skewness which indicates a bias towards higher values while columns 
NMHC(GT) and NOx(GT) display positive skewness indicating bias towards lower 
values.While chemical sensor values(columsn like CO(GT),PT08.S1(CO),NMHC(GT) were non-
stationary,meteorological characteristics (columns like (Temperature),RH (Relative 
Humidity),AH (Absolute Humidity)were indicated stationary. 
 
The count of 20652 identified as missing values were imputed using a selection of three 
imputation methods.These result’s are depicted in the figures.This filled in the gaps and 
enhanced consistency. 
 
Fig 4 is the input for Impute method, where we can see the missing values are filled using 
forward_backward_fill in Fig 5. The method uses the last known value forward (ffill) and, if 
necessary, the next known value backward (bfill) to fill in gaps. 
 

 
Figure 4: Sample input for impute methods 

 
 
 

    
Figure 5 : Output forward backward fill       Figure 6 : Output linear interpolation 

 



The impute_linear_interpolationfunction will use linear interpolation as an imputation 
method for missing columns. Initially, it copies the records from the selected column and 
then applies linear interpolation, which estimates missing values through creating a linear 
relationship between the points. Then fills in the missing values by plotting the missing data 
over the line.Fig 6 shows the results of linear interpolation. The 
impute_seasonal_decomposition function first preprocess the the dataset, converting ‘Date’ 
and ‘Time’ strings to datetime objects and merging them into one ‘Datetime’ column. Then 
it performs seasonal decomposition on the selected column. Seasonal decomposition is a 
technique for isolating seasonal patterns from the data. The missing values are then 
imputed with the seasonal component, aligning with the seasonality. Figure 7 shows the 
results of seasonal decomposition. 
  

              
                                               Figure 7: Output seasonal decomposition 

 
An hourly frequency alignment of CO(GT) allowed for a consistent temporal analysis.The 
align_frequencies method as shown in Fig 8, aligns values with specified target frequencies 
and making it easier to perform comparisons over a period of time interval. Noise in the 
measurements was reduced using outlier smoothing.Smooth Outler method selected the 
target columns and applied a moving average with a specified window size, designed to 
mitigate sudden fluctuations in the data. 
   

 
                                                              Figure 8 : Output align frequencies 

 
Additionaly, it also identified outliers by calculating z-scores, considering any data points 
exceeding a predetermined threshold as outliers. To facilitate further analysis, the method 
introduced two new columns: ’is_outlier,’ which flags data points as outliers (True), and 
’smoothened_rows,’ which records the names of columns with outliers for each row. There 



duplicates discovered were dropped. By differencing techniques, columns like 
CO(GT),PT08.S1(CO)stationarity was also enhanced. The framework's ability to detect and 
rectify data issues makes it a valuable asset for any organization relying on time series data 
for decision-making.  

Future Work 
The framework has a wide range of potential applications in the future. Extending the 
compatibility of data sources is one important option. While the framework currently 
supports data upload from zip files, it could be expanded to easily interface with various 
database systems, enhancing its use. More time series-specific validation techniques, such 
as change point identification, might be added to the existing toolkit of techniques. 
Robustness would be increased using various time indexes like DateTimeIndex with a 
range of frequencies. Based on evaluation, automated recommendations might be 
included. The framework's usefulness would be further demonstrated by testing it on 
additional varied datasets. These provide intriguing directions for further research. 
 
Our experience with Databrick 
 
Databricks played a crucial role in effectively conducting our research project. Our team 
collaborated through notebooks for interactive code development and data analysis, 
allowing us to efficiently track work progress, test multiple approaches, and share expertise 
in data quality improvement. Databricks Repos kept our code synced to the Git repository 
and facilitated change tracking and code versioning. With Databricks, we could effectively 
analyze large datasets without resource constraints. 
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UCI Air quality dataset 


