
Introduction:

In the age of cloud computing, where data reigns supreme, ensuring data quality has never
been more critical. Time series data, with its dynamic nature and diverse applications,
demands special attention in cloud-based environments. In this blog post, we explore a
Data Quality Management Framework tailored for time series data in the cloud,applied
here to the UCI Air Quality dataset.

Motivation:

Our Data Quality Assessment and Improvement Framework for time series data emerged
from the need to address data reliability challenges effectively. Time series data
underpins crucial decisions in today's data-driven landscape. To ensure its accuracy,
consistency, and completeness, we recognized the necessity for a specialized toolset. Our
motivation is to provide data professionals with a user-friendly solution that not only
detects issues but actively enhances data quality. By simplifying the process, we aim to
make high-quality time series data accessible to all, fostering data-driven excellence
across industries.

Framework Overview
At its core, the DataQuality framework comprises two essential components: the Checker
and the Improver. These components work together to comprehensively assess data quality
and enact meaningful improvements.

Figure 1 : Framework Overview

• Checker: The Checker component comprises a wide range of functions to inspect data
for inconsistencies, missing values, outliers, and other quality-related issues. With its
ability to analyze large datasets swiftly, the Checker ensures that your data meets the
highest standards.
Here's a brief overview of its key features:

1. Completeness Assessment: It helps identify missing values within the dataset, providing
insights into the extent of missing data. To do this, the framework calculates the number
of missing values for each day, allowing users to see how complete or incomplete the data
is on a daily basis. Moreover, it goes beyond just counting missing values; it also identifies
periods where data coverage is notably poor. These 'poor coverage' periods are flagged ,
providing a clear indication of when the data may be less reliable.

2. Skewness Calculation: This class calculates skewness for numeric columns, aiding in
understanding data distribution.
3. Bias Detection: It quantifies bias within a target column, ensuring data fairness and
accuracy.
4. Stationarity Check: It assesses the stationarity of numeric columns, crucial for
selecting appropriate time series analysis methods.
5. Time Shift Analysis: The class calculates time data reigns supreme for columns of
interest, revealing temporal relationships between variables.

• Improver: Where the Checker identifies areas for improvement, the Improver component
steps in to elevate your data quality. Unlike conventional solutions that offer only basic
fixes, the Improver class provides a set of advanced options. For instance, when addressing
missing values, you're not limited to simple imputation methods; you have the flexibility to
choose from a range of techniques, including machine learning-based imputation models.
This empowers to tailor data quality improvements according to specific needs.

1. Count Missing Values: It allows users to determine the number of missing values in the
dataset. It's essential for understanding data completeness.
2. Impute Missing Values: This function offers various methods for imputing missing values
in the dataset. It includes techniques like forward/backward filling
(impute_forward_back_fill), linear interpolation (impute_linear_interpolation), and seasonal
decomposition (impute_seasonal_decomposition). These methods help in replacing missing
data with meaningful estimates.
3. Plot Air Quality Data: The plot_air_quality_data method assists in visualizing air quality
data. Users can specify the timestamp and column name to plot. Additionally, it allows
overlaying imputed and resampled data for comparison, aiding in data analysis and
visualization.
4. Align Frequencies: The align_frequencies method is useful for aligning the frequencies
of timestamped data. Users can specify the timestamp column, value column, and target
frequency to resample the data. This feature is handy for ensuring data consistency.
5. Handle Duplicates: The handle_duplicates method helps identify and remove
duplicate rows in the dataset, ensuring data integrity.
6. Smooth Outliers: The smooth_outliers method identifies outliers in numeric columns and
smoothes the data by applying a moving average. This feature aids in handling noisy data.
7. Improve Stationarity: The improve_stationarity method supports making data
stationary by differencing non-stationary time series data. This is crucial for time
series analysis and modeling.
8. Improve Time Shifts: The improve_time_shifts method analyzes time shifts in a target
column, helping users discover temporal relationships between variables. It automatically

corrects time shifts by interpolating data.

These quality scores and insights are presented on a user-friendly dashboard, empowering
data professionals to make informed decisions and ensuring data-driven excellence across
industries.

Fig 3: The Air Quality Data Quality Dashboard provides two key metrics when selecting
specific columns of interest - the overall normalized consistency score and the overall
normalized relevancy score.

Figure 3 : Overall consistency and Relevancy score

Figure 2 : Dashboard Overview

Fig 2: By clicking the "Update Overall Consistency" button on the Air Quality Data Quality
Dashboard, users can access a comprehensive overview of important data quality indicators.
This includes information on missing data points, which currently stands at 20,652,
indicating a data completeness level of 87.17%. The skewness of individual columns like
CO(GT), PT08.S1(CO), and NMHC(GT) is also provided, giving insights into the distribution of
the data. Moreover, users can determine the stationarity status of these columns, with most
being found to be stationary. This ensures that the data is reliable for further analytical
processes. With this complete snapshot, users can confidently evaluate the quality of their
time series data and make informed decisions accordingly.

The created framework when put to test on the UCI Air quality dataset yielded the following
results. The data had a 87.17% complteness rate before improvement and 99.93%
completeness rate after. The missing count of the data identified as 20652 was later filled
with imputation methods in the Improver class.Using check_missing_data(), temporal
analysis revealed days with low coverage, such as "2004-03-11 were identified." Statistical
analysis such as skewness showed that columns CO(GT), PT08.S1(CO), C6H6(GT),
PT08.S2(NMHC), PT08.S3(NOx), NO2(GT), PT08.S4(NO2), PT08.S5(O3), T, RH, and AH all
exhibit negative skewness which indicates a bias towards higher values while columns
NMHC(GT) and NOx(GT) display positive skewness indicating bias towards lower
values.While chemical sensor values(columsn like CO(GT),PT08.S1(CO),NMHC(GT) were non-
stationary,meteorological characteristics (columns like (Temperature),RH (Relative
Humidity),AH (Absolute Humidity)were indicated stationary.

The count of 20652 identified as missing values were imputed using a selection of three
imputation methods.These result’s are depicted in the figures.This filled in the gaps and
enhanced consistency.

Fig 4 is the input for Impute method, where we can see the missing values are filled using
forward_backward_fill in Fig 5. The method uses the last known value forward (ffill) and, if
necessary, the next known value backward (bfill) to fill in gaps.

Figure 4: Sample input for impute methods

Figure 5 : Output forward backward fill Figure 6 : Output linear interpolation

The impute_linear_interpolationfunction will use linear interpolation as an imputation
method for missing columns. Initially, it copies the records from the selected column and
then applies linear interpolation, which estimates missing values through creating a linear
relationship between the points. Then fills in the missing values by plotting the missing data
over the line.Fig 6 shows the results of linear interpolation. The
impute_seasonal_decomposition function first preprocess the the dataset, converting ‘Date’
and ‘Time’ strings to datetime objects and merging them into one ‘Datetime’ column. Then
it performs seasonal decomposition on the selected column. Seasonal decomposition is a
technique for isolating seasonal patterns from the data. The missing values are then
imputed with the seasonal component, aligning with the seasonality. Figure 7 shows the
results of seasonal decomposition.

 Figure 7: Output seasonal decomposition

An hourly frequency alignment of CO(GT) allowed for a consistent temporal analysis.The
align_frequencies method as shown in Fig 8, aligns values with specified target frequencies
and making it easier to perform comparisons over a period of time interval. Noise in the
measurements was reduced using outlier smoothing.Smooth Outler method selected the
target columns and applied a moving average with a specified window size, designed to
mitigate sudden fluctuations in the data.

 Figure 8 : Output align frequencies

Additionaly, it also identified outliers by calculating z-scores, considering any data points
exceeding a predetermined threshold as outliers. To facilitate further analysis, the method
introduced two new columns: ’is_outlier,’ which flags data points as outliers (True), and
’smoothened_rows,’ which records the names of columns with outliers for each row. There

duplicates discovered were dropped. By differencing techniques, columns like
CO(GT),PT08.S1(CO)stationarity was also enhanced. The framework's ability to detect and
rectify data issues makes it a valuable asset for any organization relying on time series data
for decision-making.

Future Work
The framework has a wide range of potential applications in the future. Extending the
compatibility of data sources is one important option. While the framework currently
supports data upload from zip files, it could be expanded to easily interface with various
database systems, enhancing its use. More time series-specific validation techniques, such
as change point identification, might be added to the existing toolkit of techniques.
Robustness would be increased using various time indexes like DateTimeIndex with a
range of frequencies. Based on evaluation, automated recommendations might be
included. The framework's usefulness would be further demonstrated by testing it on
additional varied datasets. These provide intriguing directions for further research.

Our experience with Databrick

Databricks played a crucial role in effectively conducting our research project. Our team
collaborated through notebooks for interactive code development and data analysis,
allowing us to efficiently track work progress, test multiple approaches, and share expertise
in data quality improvement. Databricks Repos kept our code synced to the Git repository
and facilitated change tracking and code versioning. With Databricks, we could effectively
analyze large datasets without resource constraints.

Acknowledgement

The blog post was authored by Kavya Sasikumar with contributions from Aravind RK and
Deepthy Paulose.

We would like to express our sincere gratitude to Prof. Dr. Frank Hopfgartner for his
invaluable guidance, support, and mentorship throughout the course of this project. His
expertise and insights were instrumental in shaping this report.

We would also like to extend our heartfelt thanks to Evgeny Chernyi from Databricks
for his collaboration and assistance in providing valuable data and insights. His contributions
significantly enriched the quality of this research.

Lastly, we would like to acknowledge the Universität Koblenz for providing the resources
and the environment necessary for conducting this research.

Resources

Github link for the source code

UCI Air quality dataset

