cancel
Showing results for 
Search instead for 
Did you mean: 
Generative AI
Explore discussions on generative artificial intelligence techniques and applications within the Databricks Community. Share ideas, challenges, and breakthroughs in this cutting-edge field.
cancel
Showing results for 
Search instead for 
Did you mean: 

Not able to query serving endpoint thr UI consisting of logged pyfunc model calling DBRX endpoint

ram0021
New Contributor II

Hi All,

I need some urgent help. I have created an serving endpoint through below code. The code logs in pyfunc model that internally calls DBRX endpoint. However when i query using below input i always get same error. Can someone please help me with it. Its really urgent.


code to create endpoint:


import mlflow
import pandas as pd
from mlflow.models.signature import infer_signature
import json

# define a custom model
class MyModel(mlflow.pyfunc.PythonModel😞
def predict(self, context, model_input, params=None😞
print('input predict', model_input)
print('type input predict', type(model_input))
print('output predict', self.my_custom_function(model_input, params))
print('type output predict', type(self.my_custom_function(model_input, params)))

return self.my_custom_function(model_input, params)

def my_custom_function(self, model_input, params=None😞
# Convert DataFrame to a list of dictionaries
model_input_list = model_input.to_dict(orient='records')

# Convert list of dictionaries to JSON string
model_input_json = json.dumps(model_input_list)
print(type(model_input_json))
print('model_input_json:',model_input_json)

client = get_deploy_client("databricks")
response = client.predict(
endpoint="openai",
inputs={
"messages": [
{"role": "user", "content": model_input_json},
],
},
)
 
print('output1',response)
print('type', type(response))
json_string = json.dumps(response, indent=4)
print('json_string',json_string)
print('type json_string',type(json_string))

return pd.DataFrame({'output': [json_string]})
# return pd.DataFrame({'predictions': ['Hi']})

# Convert some_input to a pandas DataFrame
some_input = pd.DataFrame(['how are you'])

# save the model
with mlflow.start_run():
model = MyModel()
input_example = some_input
signature = infer_signature(input_example, model.my_custom_function(input_example))
model_info = mlflow.pyfunc.log_model(
artifact_path="model",
python_model=model,
signature=signature,
input_example=input_example
)

# Register the model
catalog = "aclr_u"
schema = "chrgbck_s"
model_name = "new_pyfunc"
mlflow.set_registry_uri("databricks-uc")
mlflow.register_model(model_info.model_uri, f"{catalog}.{schema}.{model_name}")
print('/n model registered/n')


error: {"error_code": "BAD_REQUEST", "message": "Encountered an unexpected error while evaluating the model. Verify that the input is compatible with the model for inference. Error 'Expecting value: line 1 column 1 (char 0)'", "stack_trace": "Traceback (most recent call last):\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/site-packages/requests/models.py\", line 974, in json\n return complexjson.loads(self.text, **kwargs)\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/json/__init__.py\", line 346, in loads\n return _default_decoder.decode(s)\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/json/decoder.py\", line 337, in decode\n obj, end = self.raw_decode(s, idx=_w(s, 0).end())\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/json/decoder.py\", line 355, in raw_decode\n raise JSONDecodeError(\"Expecting value\", s, err.value) from None\njson.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/site-packages/mlflowserving/scoring_server/__init__.py\", line 627, in transformation\n (raw_predictions, databricks_output, fs_metrics) = _score_model(\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/site-packages/mlflowserving/scoring_server/__init__.py\", line 368, in _score_model\n prediction, fs_metrics = score_model_maybe_with_fs_metrics(model, data, params)\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/site-packages/mlflowserving/scoring_server/scoring_server_utils.py\", line 595, in score_model_maybe_with_fs_metrics\n return (score_pyfunc_model(model, data, params), None)\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/site-packages/mlflowserving/scoring_server/scoring_server_utils.py\", line 600, in score_pyfunc_model\n return model.predict(data, params=params)\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/site-packages/mlflow/pyfunc/__init__.py\", line 492, in predict\n return _predict()\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/site-packages/mlflow/pyfunc/__init__.py\", line 478, in _predict\n return self._predict_fn(data, params=params)\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/site-packages/mlflow/pyfunc/model.py\", line 469, in predict\n return self.python_model.predict(\n File \"/root/.ipykernel/8563/command-2484865133215772-2987730514\", line 16, in predict\n File \"/root/.ipykernel/8563/command-2484865133215772-2987730514\", line 54, in my_custom_function\n File \"/opt/conda/envs/mlflow-env/lib/python3.10/site-packages/requests/models.py\", line 978, in json\n raise RequestsJSONDecodeError(e.msg, e.doc, e.pos)\nrequests.exceptions.JSONDecodeError: Expecting value: line 1 column 1 (char 0)\n"}

input given to serving UI in databricks:

{
"dataframe_split": {
"data": [
[
"how are you"
]
]
}
}


0 REPLIES 0

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group