cancel
Showing results for 
Search instead for 
Did you mean: 
Community Platform Discussions
Connect with fellow community members to discuss general topics related to the Databricks platform, industry trends, and best practices. Share experiences, ask questions, and foster collaboration within the community.
cancel
Showing results for 
Search instead for 
Did you mean: 

FAILED_READ_FILE.NO_HINT error

diego_poggioli
Contributor
We read data from csv in the volume into the table using COPY INTO. The first 200 files were added without problems, but now we are no longer able to add any new data to the table and the error is FAILED_READ_FILE.NO_HINT. The CSV format is always the same. 
In the documentation the limit of copy into is 1000 files.
We are having the same error even if we are using ignoreCorruptFiles option and also if we are reading different files (with the same format)
Databricks workspace and storage in AWS
 

 

 

1 REPLY 1

diego_poggioli
Contributor

Py4JJavaError: An error occurred while calling o392.sql. : org.apache.spark.SparkException: [FAILED_READ_FILE.NO_HINT] Error while reading file dbfs:/Volumes/...txt. SQLSTATE: KD001 at org.apache.spark.sql.errors.QueryExecutionErrors$.cannotReadFilesError(QueryExecutionErrors.scala:1095) at com.databricks.sql.CSVInferSchemaEdge$.readOrSkipFileIfCorruptOrMissing(CSVInferSchemaEdge.scala:534) at com.databricks.sql.CSVInferSchemaEdge$.$anonfun$inferSchemaFromWholeFiles$2(CSVInferSchemaEdge.scala:478) at scala.collection.Iterator$$anon$10.next(Iterator.scala:461) at scala.collection.Iterator.foreach(Iterator.scala:943) at scala.collection.Iterator.foreach$(Iterator.scala:943) at scala.collection.AbstractIterator.foreach(Iterator.scala:1431) at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62) at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49) at scala.collection.TraversableOnce.to(TraversableOnce.scala:366) at scala.collection.TraversableOnce.to$(TraversableOnce.scala:364) at scala.collection.AbstractIterator.to(Iterator.scala:1431) at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:358) at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:358) at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1431) at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:345) at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:339) at scala.collection.AbstractIterator.toArray(Iterator.scala:1431) at org.apache.spark.rdd.RDD.$anonfun$collect$2(RDD.scala:1106) at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:82) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:82) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:211) at org.apache.spark.scheduler.Task.doRunTask(Task.scala:199) at org.apache.spark.scheduler.Task.$anonfun$run$5(Task.scala:161) at com.databricks.unity.UCSEphemeralState$Handle.runWith(UCSEphemeralState.scala:51) at com.databricks.unity.HandleImpl.runWith(UCSHandle.scala:104) at com.databricks.unity.HandleImpl.$anonfun$runWithAndClose$1(UCSHandle.scala:109) at scala.util.Using$.resource(Using.scala:269) at com.databricks.unity.HandleImpl.runWithAndClose(UCSHandle.scala:108) at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:155) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.Task.run(Task.scala:102) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$10(Executor.scala:1033) at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64) at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:110) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:1036) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:923) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:750) at org.apache.spark.scheduler.DAGScheduler.$anonfun$runJob$1(DAGScheduler.scala:1330) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:1318) at org.apache.spark.SparkContext.runJobInternal(SparkContext.scala:3079) at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1104) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:125) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:454) at org.apache.spark.rdd.RDD.collect(RDD.scala:1102) at com.databricks.sql.CSVInferSchemaEdge$.$anonfun$inferSchemaFromWholeFiles$1(CSVInferSchemaEdge.scala:502) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:793) at

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group