cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

DLT Pipeline event_log error - invalid pipeline name / The Spark SQL phase analysis failed

N38
New Contributor III

I am trying the below queries using both SQL warehouse and a shared cluster on Databricks runtime (15.4/16.1) with Unity Catalog:

 
SELECT * FROM event_log(table(my_catalog.myschema.bronze_employees))

SELECT * FROM event_log("6b317553-5c5a-40d5-9541-1a5489f8b1oa")
 
Both return an error in the query output:
[INTERNAL_ERROR] The Spark SQL phase analysis failed with an internal error. You hit a bug in Spark or the Spark plugins you use. Please, report this bug to the corresponding communities or vendors, and provide the full stack trace. SQLSTATE: XX000
 
From the cluster standard error output we see:

 

{
    "ts": "2025-02-03 07:39:56,967",
    "level": "ERROR",
    "logger": "pyspark.sql.connect.client.logging",
    "msg": "GRPC Error received",
    "context": {},
    "exception": {
        "class": "_MultiThreadedRendezvous",
        "msg": "<_MultiThreadedRendezvous of RPC that terminated with:\n\tstatus = StatusCode.INTERNAL\n\tdetails = \"[INTERNAL_ERROR] The Spark SQL phase analysis failed with an internal error. You hit a bug in Spark or the Spark plugins you use. Please, report this bug to the corresponding communities or vendors, and provide the full stack trace. SQLSTATE: XX000\"\n\tdebug_error_string = \"UNKNOWN:Error received from peer  {grpc_message:\"[INTERNAL_ERROR] The Spark SQL phase analysis failed with an internal error. You hit a bug in Spark or the Spark plugins you use. Please, report this bug to the corresponding communities or vendors, and provide the full stack trace. SQLSTATE: XX000\", grpc_status:13, created_time:\"2025-02-03T07:39:56.966893191+00:00\"}\"\n>",
        "stacktrace": [
            "Traceback (most recent call last):",
            "  File \"/databricks/spark/python/pyspark/sql/connect/client/core.py\", line 1910, in _execute_and_fetch_as_iterator",
            "    for b in generator:",
            "  File \"<frozen _collections_abc>\", line 356, in __next__",
            "  File \"/databricks/spark/python/pyspark/sql/connect/client/reattach.py\", line 140, in send",
            "    if not self._has_next():",
            "           ^^^^^^^^^^^^^^^^",
            "  File \"/databricks/spark/python/pyspark/sql/connect/client/reattach.py\", line 201, in _has_next",
            "    raise e",
            "  File \"/databricks/spark/python/pyspark/sql/connect/client/reattach.py\", line 173, in _has_next",
            "    self._current = self._call_iter(",
            "                    ^^^^^^^^^^^^^^^^",
            "  File \"/databricks/spark/python/pyspark/sql/connect/client/reattach.py\", line 298, in _call_iter",
            "    raise e",
            "  File \"/databricks/spark/python/pyspark/sql/connect/client/reattach.py\", line 278, in _call_iter",
            "    return iter_fun()",
            "           ^^^^^^^^^^",
            "  File \"/databricks/spark/python/pyspark/sql/connect/client/reattach.py\", line 174, in <lambda>",
            "    lambda: next(self._iterator)  # type: ignore[arg-type]",
            "            ^^^^^^^^^^^^^^^^^^^^",
            "  File \"/databricks/spark/python/pyspark/sql/connect/client/core.py\", line 657, in __iter__",
            "    for response in self._call:",
            "  File \"/databricks/python/lib/python3.12/site-packages/grpc/_channel.py\", line 540, in __next__",
            "    return self._next()",
            "           ^^^^^^^^^^^^",
            "  File \"/databricks/python/lib/python3.12/site-packages/grpc/_channel.py\", line 966, in _next",
            "    raise self",
            "grpc._channel._MultiThreadedRendezvous: <_MultiThreadedRendezvous of RPC that terminated with:",
            "\tstatus = StatusCode.INTERNAL",
            "\tdetails = \"[INTERNAL_ERROR] The Spark SQL phase analysis failed with an internal error. You hit a bug in Spark or the Spark plugins you use. Please, report this bug to the corresponding communities or vendors, and provide the full stack trace. SQLSTATE: XX000\"",
            "\tdebug_error_string = \"UNKNOWN:Error received from peer  {grpc_message:\"[INTERNAL_ERROR] The Spark SQL phase analysis failed with an internal error. You hit a bug in Spark or the Spark plugins you use. Please, report this bug to the corresponding communities or vendors, and provide the full stack trace. SQLSTATE: XX000\", grpc_status:13, created_time:\"2025-02-03T07:39:56.966893191+00:00\"}\"",
            ">"
        ]
    }
}​

 

 
From the cluster log4j-active we see:
 
org.apache.spark.SparkException: [INTERNAL_ERROR] The Spark SQL phase analysis failed with an internal error. You hit a bug in Spark or the Spark plugins you use. Please, report this bug to the corresponding communities or vendors, and provide the full stack trace. SQLSTATE: XX000
at org.apache.spark.SparkException$.internalError(SparkException.scala:116)
at org.apache.spark.sql.execution.QueryExecution$.toInternalError(QueryExecution.scala:1220)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:1233)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:599)
at com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:595)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1422)
at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:595)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$lazyAnalyzed$1(QueryExecution.scala:271)
at scala.util.Try$.apply(Try.scala:213)
at org.apache.spark.util.Utils$.doTryWithCallerStacktrace(Utils.scala:1676)
at org.apache.spark.util.Utils$.getTryWithCallerStacktrace(Utils.scala:1737)
at org.apache.spark.util.LazyTry.get(LazyTry.scala:58)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:303)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:251)
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:131)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1422)
at org.apache.spark.sql.SparkSession.$anonfun$withActiveAndFrameProfiler$1(SparkSession.scala:1429)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.sql.SparkSession.withActiveAndFrameProfiler(SparkSession.scala:1429)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:123)
at org.apache.spark.sql.SparkSession.$anonfun$sql$4(SparkSession.scala:1102)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1422)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:1054)
at org.apache.spark.sql.connect.planner.SparkConnectPlanner.executeSQL(SparkConnectPlanner.scala:3455)
at org.apache.spark.sql.connect.planner.SparkConnectPlanner.handleSqlCommand(SparkConnectPlanner.scala:3287)
at org.apache.spark.sql.connect.planner.SparkConnectPlanner.process(SparkConnectPlanner.scala:3222)
at org.apache.spark.sql.connect.execution.ExecuteThreadRunner.handleCommand(ExecuteThreadRunner.scala:413)
at org.apache.spark.sql.connect.execution.ExecuteThreadRunner.$anonfun$executeInternal$1(ExecuteThreadRunner.scala:299)
at org.apache.spark.sql.connect.execution.ExecuteThreadRunner.$anonfun$executeInternal$1$adapted(ExecuteThreadRunner.scala:220)
at org.apache.spark.sql.connect.service.SessionHolder.$anonfun$withSession$2(SessionHolder.scala:404)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1422)
at org.apache.spark.sql.connect.service.SessionHolder.$anonfun$withSession$1(SessionHolder.scala:404)
at org.apache.spark.JobArtifactSet$.withActiveJobArtifactState(JobArtifactSet.scala:97)
at org.apache.spark.sql.artifact.ArtifactManager.$anonfun$withResources$1(ArtifactManager.scala:90)
at org.apache.spark.util.Utils$.withContextClassLoader(Utils.scala:240)
at org.apache.spark.sql.artifact.ArtifactManager.withResources(ArtifactManager.scala:89)
at org.apache.spark.sql.connect.service.SessionHolder.withSession(SessionHolder.scala:403)
at org.apache.spark.sql.connect.execution.ExecuteThreadRunner.executeInternal(ExecuteThreadRunner.scala:220)
at org.apache.spark.sql.connect.execution.ExecuteThreadRunner.org$apache$spark$sql$connect$execution$ExecuteThreadRunner$$execute(ExecuteThreadRunner.scala:139)
at org.apache.spark.sql.connect.execution.ExecuteThreadRunner$ExecutionThread.$anonfun$run$2(ExecuteThreadRunner.scala:639)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.unity.UCSEphemeralState$Handle.runWith(UCSEphemeralState.scala:51)
at com.databricks.unity.HandleImpl.runWith(UCSHandle.scala:104)
at com.databricks.unity.HandleImpl.$anonfun$runWithAndClose$1(UCSHandle.scala:109)
at scala.util.Using$.resource(Using.scala:269)
at com.databricks.unity.HandleImpl.runWithAndClose(UCSHandle.scala:108)
at org.apache.spark.sql.connect.execution.ExecuteThreadRunner$ExecutionThread.run(ExecuteThreadRunner.scala:639)
Suppressed: org.apache.spark.util.Utils$OriginalTryStackTraceException: Full stacktrace of original doTryWithCallerStacktrace caller
at org.apache.spark.SparkException$.internalError(SparkException.scala:116)
at org.apache.spark.sql.execution.QueryExecution$.toInternalError(QueryExecution.scala:1220)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:1233)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:599)
at com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:595)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1422)
at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:595)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$lazyAnalyzed$1(QueryExecution.scala:271)
at scala.util.Try$.apply(Try.scala:213)
at org.apache.spark.util.Utils$.doTryWithCallerStacktrace(Utils.scala:1676)
at org.apache.spark.util.LazyTry.tryT$lzycompute(LazyTry.scala:46)
at org.apache.spark.util.LazyTry.tryT(LazyTry.scala:46)
... 36 more
Caused by: java.lang.AssertionError: assertion failed: invalid pipeline schema: [Ljava.lang.String;@1ccd7699
at scala.Predef$.assert(Predef.scala:223)
at com.databricks.sql.dlt.EventLog.getPipelineEventLogTable(EventLog.scala:225)
at com.databricks.sql.dlt.EventLog.getPipelineEventLogTable(EventLog.scala:187)
at com.databricks.sql.dlt.EventLog.getPipelineIdAndEventLogTable(EventLog.scala:173)
at com.databricks.sql.dlt.EventLog.x$1$lzycompute(EventLog.scala:98)
at com.databricks.sql.dlt.EventLog.x$1(EventLog.scala:98)
at com.databricks.sql.dlt.EventLog.eventLogTable$lzycompute(EventLog.scala:98)
at com.databricks.sql.dlt.EventLog.eventLogTable(EventLog.scala:98)
at com.databricks.sql.dlt.EventLog.loadEventLogTable(EventLog.scala:108)
at com.databricks.sql.dlt.EventLogAnalysis.com$databricks$sql$dlt$EventLogAnalysis$$loadEventLogTable(EventLogAnalysis.scala:46)
at com.databricks.sql.dlt.EventLogAnalysis$$anonfun$rewrite$2.applyOrElse(EventLogAnalysis.scala:42)
at com.databricks.sql.dlt.EventLogAnalysis$$anonfun$rewrite$2.applyOrElse(EventLogAnalysis.scala:37)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$3(AnalysisHelper.scala:141)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(origin.scala:85)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$1(AnalysisHelper.scala:141)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:436)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning(AnalysisHelper.scala:137)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning$(AnalysisHelper.scala:133)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUpWithPruning(LogicalPlan.scala:41)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$2(AnalysisHelper.scala:138)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1314)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1313)
at org.apache.spark.sql.catalyst.plans.logical.Project.mapChildren(basicLogicalOperators.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$1(AnalysisHelper.scala:138)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:436)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning(AnalysisHelper.scala:137)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning$(AnalysisHelper.scala:133)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUpWithPruning(LogicalPlan.scala:41)
at com.databricks.sql.dlt.EventLogAnalysis.rewrite(EventLogAnalysis.scala:37)
at com.databricks.sql.dlt.EventLogAnalysis.rewrite(EventLogAnalysis.scala:32)
at com.databricks.sql.optimizer.DatabricksEdgeRule.apply(DatabricksEdgeRule.scala:36)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$14(RuleExecutor.scala:470)
at org.apache.spark.sql.catalyst.rules.RecoverableRuleExecutionHelper.processRule(RuleExecutor.scala:620)
at org.apache.spark.sql.catalyst.rules.RecoverableRuleExecutionHelper.processRule$(RuleExecutor.scala:603)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.processRule(RuleExecutor.scala:130)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$13(RuleExecutor.scala:470)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$12(RuleExecutor.scala:469)
at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126)
at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122)
at scala.collection.immutable.List.foldLeft(List.scala:91)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$11(RuleExecutor.scala:465)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeBatch$1(RuleExecutor.scala:442)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$20(RuleExecutor.scala:575)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$20$adapted(RuleExecutor.scala:575)
at scala.collection.immutable.List.foreach(List.scala:431)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:575)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:348)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeSameContext(Analyzer.scala:493)
at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$execute$1(Analyzer.scala:486)
at org.apache.spark.sql.catalyst.analysis.AnalysisContext$.withNewAnalysisContext(Analyzer.scala:383)
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:486)
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:402)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:340)
at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:211)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:340)
at org.apache.spark.sql.catalyst.analysis.resolver.HybridAnalyzer.resolveInFixedPoint(HybridAnalyzer.scala:190)
at org.apache.spark.sql.catalyst.analysis.resolver.HybridAnalyzer.$anonfun$apply$1(HybridAnalyzer.scala:76)
at org.apache.spark.sql.catalyst.analysis.resolver.HybridAnalyzer.withTrackedAnalyzerBridgeState(HybridAnalyzer.scala:111)
at org.apache.spark.sql.catalyst.analysis.resolver.HybridAnalyzer.apply(HybridAnalyzer.scala:71)
at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:473)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:443)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:473)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$lazyAnalyzed$2(QueryExecution.scala:277)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94)
at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:525)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$5(QueryExecution.scala:600)
at org.apache.spark.sql.execution.SQLExecution$.withExecutionPhase(SQLExecution.scala:145)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$4(QueryExecution.scala:600)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:1231)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:599)
at com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:595)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1422)
at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:595)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$lazyAnalyzed$1(QueryExecution.scala:271)
at scala.util.Try$.apply(Try.scala:213)
at org.apache.spark.util.Utils$.doTryWithCallerStacktrace(Utils.scala:1676)
at org.apache.spark.util.LazyTry.tryT$lzycompute(LazyTry.scala:46)
at org.apache.spark.util.LazyTry.tryT(LazyTry.scala:46)
 
and also from the log4j-active we see:
 
com.databricks.backend.daemon.driver.JupyterDriverLocal$SqlCommHandler$MagicSQLExecutionException: Traceback (most recent call last):
File "/databricks/python_shell/lib/dbruntime/sql_magic/sql_magic.py", line 165, in execute_via_sql_comm_handler
df = self.get_query_request_result(request["query"])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/databricks/python_shell/lib/dbruntime/sql_magic/sql_magic.py", line 122, in get_query_request_result
df = self.asserting_spark.sql(query, widget_bindings)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/databricks/spark/python/pyspark/sql/connect/session.py", line 796, in sql
data, properties, ei = self.client.execute_command(cmd.command(self._client))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/databricks/spark/python/pyspark/sql/connect/client/core.py", line 1472, in execute_command
data, _, metrics, observed_metrics, properties = self._execute_and_fetch(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/databricks/spark/python/pyspark/sql/connect/client/core.py", line 1948, in _execute_and_fetch
for response in self._execute_and_fetch_as_iterator(
File "/databricks/spark/python/pyspark/sql/connect/client/core.py", line 1924, in _execute_and_fetch_as_iterator
self._handle_error(error)
File "/databricks/spark/python/pyspark/sql/connect/client/core.py", line 2244, in _handle_error
self._handle_rpc_error(error)
File "/databricks/spark/python/pyspark/sql/connect/client/core.py", line 2348, in _handle_rpc_error
raise convert_exception(
pyspark.errors.exceptions.connect.SparkException: [INTERNAL_ERROR] The Spark SQL phase analysis failed with an internal error. You hit a bug in Spark or the Spark plugins you use. Please, report this bug to the corresponding communities or vendors, and provide the full stack trace. SQLSTATE: XX000
11 REPLIES 11

Alberto_Umana
Databricks Employee
Databricks Employee

Hello @N38,

Thanks for your report! I have validated internally and our engineering team is aware of this and working on it via ES-1282279

N38
New Contributor III

Thank you @Alberto_Umana - please keep me posted as you progress. We are currently unable to use this function and it will be great to have this resolved as soon as possible.

Alberto_Umana
Databricks Employee
Databricks Employee

Sure @N38 - Engineering is still looking and trying to reproduce the issue.

N38
New Contributor III

Thank you for the update, if you need any further information please let me know.

Mbunko
New Contributor II

Is this a universal issue as I've been having the same problem?

Alberto_Umana
Databricks Employee
Databricks Employee

Yes @Mbunko - our engineering team is working on it.

N38
New Contributor III

Thank you for the update @Alberto_Umana, I look forward to hearing more about the solution!

N38
New Contributor III

Good morning, is there any update on this issue?

Alberto_Umana
Databricks Employee
Databricks Employee

Hello Team,

I do not see any current update about this. I will follow up on this internally and get back.

Mbunko
New Contributor II

Hi, is there an ETA on this fix?

ron99
New Contributor II

Hi,
I am also facing same issue, is there any ETA to fix it?

Join Us as a Local Community Builder!

Passionate about hosting events and connecting people? Help us grow a vibrant local community—sign up today to get started!

Sign Up Now