I try several Spark Deep Learning inference notebooks on Windows. I run Spark in standalone mode with 1 worker with 12 cores (both driver-memory and executor-memory are set to 8G). I always get the same error when applying the deep learning model to the test dataset. For example, in the MNIST image classification notebook, when running this cell:
%%time
# first pass caches model/fn
preds = df.withColumn("preds", mnist(struct(df.columns))).collect()
I always get this error:
Py4JJavaError: An error occurred while calling o890.collectToPython.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 9 in stage 6.0 failed 4 times, most recent failure: Lost task 9.3 in stage 6.0 (TID 69) (192.168.112.1 executor 0): java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:210)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.sql.execution.python.PythonArrowOutput$$anon$1.read(PythonArrowOutput.scala:105)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:525)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:890)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:890)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
at org.apache.spark.scheduler.Task.run(Task.scala:141)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2844)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2780)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2779)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2779)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1242)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1242)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1242)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3048)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2982)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2971)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:984)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2398)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2419)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2438)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2463)
at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1046)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:407)
at org.apache.spark.rdd.RDD.collect(RDD.scala:1045)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:448)
at org.apache.spark.sql.Dataset.$anonfun$collectToPython$1(Dataset.scala:4160)
at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4334)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:546)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:4332)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:201)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:108)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:66)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4332)
at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:4157)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:210)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.sql.execution.python.PythonArrowOutput$$anon$1.read(PythonArrowOutput.scala:105)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:525)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:890)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:890)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
at org.apache.spark.scheduler.Task.run(Task.scala:141)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
The spark session is created and configured as follow:
spark = SparkSession \
.builder \
.appName("spark-dl-inference") \
.master("spark://...:7077") \
.config("spark.executor.memory", "8g") \
.config("spark.driver.memory", "8g") \
.config("spark.python.worker.reuse",True) \
.getOrCreate()
This is the web ui of the master:
And this is the web ui of the worker:
I've reduce the model size (just 100k parameters) and the test dataset (only 70 images).