cancel
Showing results forย 
Search instead forย 
Did you mean:ย 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results forย 
Search instead forย 
Did you mean:ย 

Error when running Spark-DL notebooks

janacc
New Contributor

I try several Spark Deep Learning inference notebooks on Windows. I run Spark in standalone mode with 1 worker with 12 cores (both driver-memory and executor-memory are set to 8G). I always get the same error when applying the deep learning model to the test dataset. For example, in the MNIST image classification notebook, when running this cell:

%%time
# first pass caches model/fn
preds = df.withColumn("preds", mnist(struct(df.columns))).collect()

I always get this error:

Py4JJavaError: An error occurred while calling o890.collectToPython.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 9 in stage 6.0 failed 4 times, most recent failure: Lost task 9.3 in stage 6.0 (TID 69) (192.168.112.1 executor 0): java.net.SocketException: Connection reset
	at java.net.SocketInputStream.read(SocketInputStream.java:210)
	at java.net.SocketInputStream.read(SocketInputStream.java:141)
	at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
	at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
	at java.io.DataInputStream.readInt(DataInputStream.java:387)
	at org.apache.spark.sql.execution.python.PythonArrowOutput$$anon$1.read(PythonArrowOutput.scala:105)
	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:525)
	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
	at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
	at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
	at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)
	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:890)
	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:890)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
	at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
	at org.apache.spark.scheduler.Task.run(Task.scala:141)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
	at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2844)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2780)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2779)
	at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
	at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2779)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1242)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1242)
	at scala.Option.foreach(Option.scala:407)
	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1242)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3048)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2982)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2971)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:984)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2398)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2419)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2438)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2463)
	at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1046)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
	at org.apache.spark.rdd.RDD.withScope(RDD.scala:407)
	at org.apache.spark.rdd.RDD.collect(RDD.scala:1045)
	at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:448)
	at org.apache.spark.sql.Dataset.$anonfun$collectToPython$1(Dataset.scala:4160)
	at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4334)
	at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:546)
	at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:4332)
	at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:125)
	at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:201)
	at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:108)
	at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:66)
	at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4332)
	at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:4157)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
	at py4j.Gateway.invoke(Gateway.java:282)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
	at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
	at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketException: Connection reset
	at java.net.SocketInputStream.read(SocketInputStream.java:210)
	at java.net.SocketInputStream.read(SocketInputStream.java:141)
	at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
	at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
	at java.io.DataInputStream.readInt(DataInputStream.java:387)
	at org.apache.spark.sql.execution.python.PythonArrowOutput$$anon$1.read(PythonArrowOutput.scala:105)
	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:525)
	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
	at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
	at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
	at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)
	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:890)
	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:890)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
	at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
	at org.apache.spark.scheduler.Task.run(Task.scala:141)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	... 1 more
The spark session is created and configured as follow:
 

 

spark = SparkSession \
.builder \
.appName("spark-dl-inference") \
.master("spark://...:7077") \
.config("spark.executor.memory", "8g") \
.config("spark.driver.memory", "8g") \
.config("spark.python.worker.reuse",True) \
.getOrCreate()

 

This is the web ui of the master:
master.png
And this is the web ui of the worker:
worker.png
 
I've reduce the model size (just 100k parameters) and the test dataset (only 70 images).
1 REPLY 1

jose_gonzalez
Moderator
Moderator

This is a connectivity issue. Check your connectivity by doing "%sh nc -zv {hostname} {port}" from your notebook

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you wonโ€™t want to miss the chance to attend and share knowledge.

If there isnโ€™t a group near you, start one and help create a community that brings people together.

Request a New Group