06-10-2022 05:07 PM
I am trying to access the Azure Blob table using Pyspark but getting an Authentication Error. Here I am passing SAS token (HTTP and HTTPS enabled) but it's working only with WASBS (HTTPS) URL, not with WASB (HTTP) URL.
Even I tried with Account key as well but didn't work.
The other way is working fine if I try to load the parquet file by passing the WASB URL, but this method is very slow and takes too much time to access the data.
Please help me understand why PySpark-Azure showing such behaviour.
We had a meeting with the Azure support team as well but they also couldn't find any issue from their end
Sample Code:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
spark.conf.set("fs.azure.sas.<container-name>.<storage-account>.blob.core.windows.net","<
SAS Token>")
Error Details:
Py4JJavaError: An error occurred while calling o146.table.
: java.util.concurrent.ExecutionException: org.apache.hadoop.fs.azure.AzureException: com.microsoft.azure.storage.StorageException: Cannot use HTTP with credentials that only support HTTPS.
at org.sparkproject.guava.util.concurrent.AbstractFuture$Sync.getValue(AbstractFuture.java:306)
at org.sparkproject.guava.util.concurrent.AbstractFuture$Sync.get(AbstractFuture.java:293)
at org.sparkproject.guava.util.concurrent.AbstractFuture.get(AbstractFuture.java:116)
at org.sparkproject.guava.util.concurrent.Uninterruptibles.getUninterruptibly(Uninterruptibles.java:135)
at org.sparkproject.guava.cache.LocalCache$Segment.getAndRecordStats(LocalCache.java:2410)
at org.sparkproject.guava.cache.LocalCache$Segment.loadSync(LocalCache.java:2380)
at org.sparkproject.guava.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2342)
at org.sparkproject.guava.cache.LocalCache$Segment.get(LocalCache.java:2257)
at org.sparkproject.guava.cache.LocalCache.get(LocalCache.java:4000)
at org.sparkproject.guava.cache.LocalCache$LocalManualCache.get(LocalCache.java:4789)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.getCachedPlan(SessionCatalog.scala:155)
at org.apache.spark.sql.execution.datasources.FindDataSourceTable.org$apache$spark$sql$execution$datasources$FindDataSourceTable$$readDataSourceTable(DataSourceStrategy.scala:249)
at org.apache.spark.sql.execution.datasources.FindDataSourceTable$$anonfun$apply$2.applyOrElse(DataSourceStrategy.scala:288)
at org.apache.spark.sql.execution.datasources.FindDataSourceTable$$anonfun$apply$2.applyOrElse(DataSourceStrategy.scala:278)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDown$2(AnalysisHelper.scala:108)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:74)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDown$1(AnalysisHelper.scala:108)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:221)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDown(AnalysisHelper.scala:106)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDown$(AnalysisHelper.scala:104)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsDown(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDown$4(AnalysisHelper.scala:113)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:408)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:244)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:406)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:359)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDown$1(AnalysisHelper.scala:113)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:221)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDown(AnalysisHelper.scala:106)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDown$(AnalysisHelper.scala:104)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsDown(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperators(AnalysisHelper.scala:73)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperators$(AnalysisHelper.scala:72)
at
06-12-2022 03:42 AM
Hi @Arvind Ravish
The issue got fixed after passing HTTP and HTTPS enabled token to spark executors.
Thanks again for your help
06-12-2022 12:02 AM
Based on your error you have enabled Secure transfer enabled on the storage account.
You can disable the below setting and try again with WASB/HTTP
https://docs.microsoft.com/en-us/azure/storage/common/storage-require-secure-transfer
06-12-2022 12:07 AM
06-12-2022 03:42 AM
Hi @Arvind Ravish
The issue got fixed after passing HTTP and HTTPS enabled token to spark executors.
Thanks again for your help
06-13-2022 03:08 AM
Hi @Vivek Sinha, Thank you for sharing the update. Would you mind marking your answer as the best as it would help the community?
Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.
If there isn’t a group near you, start one and help create a community that brings people together.
Request a New Group