Use Delta Lake's DELETE command to remove the faulty records from your Silver tables. You can do this in a Databricks notebook or a separate script.
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("DeleteFaultyRecords").getOrCreate()
# Define the criteria for faulty records
faulty_criteria = "your_faulty_criteria_here"
# List of Silver tables to clean
silver_tables = ["silver_table1", "silver_table2"]
for table in silver_tables:
spark.sql(f"DELETE FROM {table} WHERE {faulty_criteria}")
Also, Ensure that your DLT pipeline code is corrected to prevent future faulty records. Update the transformation logic in your Silver layer to handle the data correctly. (spark dataframe transformations or constraints)