cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

unzip twice the same file not executing

RantoB
Valued Contributor

Hi, 

I need to unzip some files that are ingested but when I unzip twice the same zipped file, the unzip command does not execute :

As suggesgted in the documentation I did :

import urllib 
urllib.request.urlretrieve("https://resources.lendingclub.com/LoanStats3a.csv.zip", "/tmp/LoanStats3a.csv.zip")
%sh
unzip /tmp/LoanStats3a.csv.zip

but when it apply again unzip, command never execute and seems to be blocked in a no out loop.

Thanks for you help.

1 ACCEPTED SOLUTION

Accepted Solutions

Hubert-Dudek
Esteemed Contributor III

Another problem is that dbfs storage doesn't support random writes (used by zip):

Does not support random writes. For workloads that require random writes, perform the operations on local disk first and then copy the result to

/dbfs

source: https://docs.databricks.com/data/databricks-file-system.html#local-file-api-limitations

View solution in original post

17 REPLIES 17

RantoB
Valued Contributor

Ok.

Not that I have the same behaviour when I'm usig the python api :

with zipfile.ZipFile(path, 'r') as zip_ref:
    zip_ref.extractall(directory_to_extract_to)

Anonymous
Not applicable

If you're going to be reading the files with Spark, you don't need to unzip them. Spark's CSV reader can read zipped or unzipped CSVs.

If you're going to be using URL retrieve, remember that it will put the files on the driver and not in DBFS so you'll have to move it into the distributed filesystem to use Spark to read them.

RantoB
Valued Contributor

Actually, I will not be reading the file with SPark at this stage and I not using URL retrieve either, that was just for the reproductible example.

Zipped files are ingested on ADLS Gen2 and I unzip them into distinct directories depending on their names. But when I execute my script a second time, I am facing the problem I described above.

Anonymous
Not applicable

So when you use %sh it's going to use the file system on the driver, which is temporary. The driver storage is the local disc on a VM, not ADL2.

RantoB
Valued Contributor

Yes I understand but whatever I do with the unzipped files, I am asking why is there a problem executing twice the unzip action ?

Hubert-Dudek
Esteemed Contributor III
  1. Community edition can have blocked saving to file system or executing %sh
  2. In other editions please verify that file there is. It can be saved for example to dbfs folder.

Following command could help:

dbutils.fs.ls("dbfs:/tmp/")
%sh
ls /dbfs/tmp

you can also consider to adjust your script to use dbfs prefix for example:

    import urllib 
    urllib.request.urlretrieve("https://resources.lendingclub.com/LoanStats3a.csv.zip", "/dbfs/tmp/LoanStats3a.csv.zip")

RantoB
Valued Contributor

I am trying to run :

with zipfile.ZipFile(path, 'r') as zip_ref:
    zip_ref.extractall(directory_to_extract_to)

but I think I am facing some issues because my zip file is quite large.

jose_gonzalez
Databricks Employee
Databricks Employee

hi @Bertrand BURCKER​ ,

Are you still having this issue or you were able to solve it? Please let us know.

Atanu
Databricks Employee
Databricks Employee

Could you please try without community edition, there must be some restriction for %sh

RantoB
Valued Contributor

No, still not solved.

Hubert-Dudek
Esteemed Contributor III

what is you databricks version Azure or free community edition?

jose_gonzalez
Databricks Employee
Databricks Employee

Have you try the examples from this article? link

I would like my code to be fully wwritten in python if possible.

Atanu
Databricks Employee
Databricks Employee
  • Could you please try without community edition, there must be some restriction for %sh
  •  

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group