cancel
Showing results for 
Search instead for 
Did you mean: 
Generative AI
Explore discussions on generative artificial intelligence techniques and applications within the Databricks Community. Share ideas, challenges, and breakthroughs in this cutting-edge field.
cancel
Showing results for 
Search instead for 
Did you mean: 

Generative Certification notebook error

cleversuresh
New Contributor

I am preparing for Generative Certification and facing the below error (LookupError:) when running the notebook in the first module. These were running without any errors in the past.

Complete error stack trace:

********************************************************************** Resource averaged_perceptron_tagger_eng not found. Please use the NLTK Downloader to obtain the resource: >>> import nltk >>> nltk.download('averaged_perceptron_tagger_eng')  For more information see: https://www.nltk.org/data.html Attempted to load taggers/averaged_perceptron_tagger_eng/ Searched in: - '/root/nltk_data' - '/local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/nltk_data' - '/local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/share/nltk_data' - '/local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/nltk_data' - '/usr/share/nltk_data' - '/usr/local/share/nltk_data' - '/usr/lib/nltk_data' - '/usr/local/lib/nltk_data' **********************************************************************
File <command-3201934447568746>, line 2 1 with open(f"{articles_path.replace('dbfs:','/dbfs/')}2302.06476.pdf", mode="rb") as pdf: ----> 2 doc = extract_doc_text(pdf.read()) 3 print(doc)

File <command-3201934447568602>, line 8, in extract_doc_text(x) 6 def extract_doc_text(x : bytes) -> str: 7 # Read files and extract the values with unstructured ----> 8 sections = partition(file=io.BytesIO(x)) 9 def clean_section(txt): 10 txt = re.sub(r'\n', '', txt)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/partition/auto.py:383, in partition(filename, content_type, file, file_filename, url, include_page_breaks, strategy, encoding, paragraph_grouper, headers, skip_infer_table_types, ssl_verify, ocr_languages, languages, detect_language_per_element, pdf_infer_table_structure, pdf_extract_images, pdf_image_output_dir_path, xml_keep_tags, data_source_metadata, metadata_filename, request_timeout, **kwargs) 381 elif filetype == FileType.PDF: 382 _partition_pdf = _get_partition_with_extras("pdf") --> 383 elements = _partition_pdf( 384 filename=filename, # type: ignore 385 file=file, # type: ignore 386 url=None, 387 include_page_breaks=include_page_breaks, 388 infer_table_structure=infer_table_structure, 389 strategy=strategy, 390 languages=languages, 391 extract_images_in_pdf=pdf_extract_images, 392 image_output_dir_path=pdf_image_output_dir_path, 393 **kwargs, 394 ) 395 elif (filetype == FileType.PNG) or (filetype == FileType.JPG) or (filetype == FileType.TIFF): 396 elements = partition_image( 397 filename=filename, # type: ignore 398 file=file, # type: ignore (...) 404 **kwargs, 405 )
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/documents/elements.py:371, in process_metadata.<locals>.decorator.<locals>.wrapper(*args, **kwargs) 369 @functools.wraps(func) 370 def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> List[Element]: --> 371 elements = func(*args, **kwargs) 372 sig = inspect.signature(func) 373 params: Dict[str, Any] = dict(**dict(zip(sig.parameters, args)), **kwargs)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/file_utils/filetype.py:591, in add_filetype.<locals>.decorator.<locals>.wrapper(*args, **kwargs) 589 @functools.wraps(func) 590 def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> List[Element]: --> 591 elements = func(*args, **kwargs) 592 sig = inspect.signature(func) 593 params: Dict[str, Any] = dict(**dict(zip(sig.parameters, args)), **kwargs)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/file_utils/filetype.py:546, in add_metadata.<locals>.wrapper(*args, **kwargs) 544 @functools.wraps(func) 545 def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> List[Element]: --> 546 elements = func(*args, **kwargs) 547 sig = inspect.signature(func) 548 params: Dict[str, Any] = dict(**dict(zip(sig.parameters, args)), **kwargs)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/chunking/title.py:297, in add_chunking_strategy.<locals>.decorator.<locals>.wrapper(*args, **kwargs) 295 @functools.wraps(func) 296 def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> List[Element]: --> 297 elements = func(*args, **kwargs) 298 sig = inspect.signature(func) 299 params: Dict[str, Any] = dict(**dict(zip(sig.parameters, args)), **kwargs)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/partition/pdf.py:183, in partition_pdf(filename, file, include_page_breaks, strategy, infer_table_structure, ocr_languages, languages, include_metadata, metadata_filename, metadata_last_modified, chunking_strategy, links, extract_images_in_pdf, image_output_dir_path, **kwargs) 177 languages = convert_old_ocr_languages_to_languages(ocr_languages) 178 logger.warning( 179 "The ocr_languages kwarg will be deprecated in a future version of unstructured. " 180 "Please use languages instead.", 181 ) --> 183 return partition_pdf_or_image( 184 filename=filename, 185 file=file, 186 include_page_breaks=include_page_breaks, 187 strategy=strategy, 188 infer_table_structure=infer_table_structure, 189 languages=languages, 190 metadata_last_modified=metadata_last_modified, 191 extract_images_in_pdf=extract_images_in_pdf, 192 image_output_dir_path=image_output_dir_path, 193 **kwargs, 194 )
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/partition/pdf.py:288, in partition_pdf_or_image(filename, file, is_image, include_page_breaks, strategy, infer_table_structure, ocr_languages, languages, metadata_last_modified, extract_images_in_pdf, image_output_dir_path, **kwargs) 271 last_modification_date = get_the_last_modification_date_pdf_or_img( 272 file=file, 273 filename=filename, 274 ) 276 if ( 277 not is_image 278 and determine_pdf_or_image_strategy( (...) 286 != "ocr_only" 287 😞 --> 288 extracted_elements = extractable_elements( 289 filename=filename, 290 file=spooled_to_bytes_io_if_needed(file), 291 include_page_breaks=include_page_breaks, 292 metadata_last_modified=metadata_last_modified or last_modification_date, 293 **kwargs, 294 ) 295 pdf_text_extractable = any( 296 isinstance(el, Text) and el.text.strip() for el in extracted_elements 297 ) 298 else:
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/partition/pdf.py:206, in extractable_elements(filename, file, include_page_breaks, metadata_last_modified, **kwargs) 204 if isinstance(file, bytes😞 205 file = io.BytesIO(file) --> 206 return _partition_pdf_with_pdfminer( 207 filename=filename, 208 file=file, 209 include_page_breaks=include_page_breaks, 210 metadata_last_modified=metadata_last_modified, 211 **kwargs, 212 )
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/utils.py:179, in requires_dependencies.<locals>.decorator.<locals>.wrapper(*args, **kwargs) 170 if len(missing_deps) > 0: 171 raise ImportError( 172 f"Following dependencies are missing: {', '.join(missing_deps)}. " 173 + ( (...) 177 ), 178 ) --> 179 return func(*args, **kwargs)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/partition/pdf.py:525, in _partition_pdf_with_pdfminer(filename, file, include_page_breaks, metadata_last_modified, **kwargs) 523 elif file: 524 fp = cast(BinaryIO, file) --> 525 elements = _process_pdfminer_pages( 526 fp=fp, 527 filename=filename, 528 include_page_breaks=include_page_breaks, 529 metadata_last_modified=metadata_last_modified, 530 **kwargs, 531 ) 533 return elements
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/partition/pdf.py:613, in _process_pdfminer_pages(fp, filename, include_page_breaks, metadata_last_modified, sort_mode, **kwargs) 611 if _text.strip(): 612 points = ((x1, y1), (x1, y2), (x2, y2), (x2, y1)) --> 613 element = element_from_text( 614 _text, 615 coordinates=points, 616 coordinate_system=coordinate_system, 617 ) 618 coordinates_metadata = CoordinatesMetadata( 619 points=points, 620 system=coordinate_system, 621 ) 623 links: List[Link] = []
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/partition/text.py:235, in element_from_text(text, coordinates, coordinate_system) 229 elif is_possible_numbered_list(text): 230 return ListItem( 231 text=text, 232 coordinates=coordinates, 233 coordinate_system=coordinate_system, 234 ) --> 235 elif is_possible_narrative_text(text): 236 return NarrativeText( 237 text=text, 238 coordinates=coordinates, 239 coordinate_system=coordinate_system, 240 ) 241 elif is_possible_title(text):
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/partition/text_type.py:87, in is_possible_narrative_text(text, cap_threshold, non_alpha_threshold, languages, language_checks) 84 if under_non_alpha_ratio(text, threshold=non_alpha_threshold): 85 return False ---> 87 if "eng" in languages and (sentence_count(text, 3) < 2) and (not contains_verb(text)😞 88 trace_logger.detail(f"Not narrative. Text does not contain a verb:\n\n{text}") # type: ignore # noqa: E501 89 return False
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/partition/text_type.py:189, in contains_verb(text) 186 if text.isupper(): 187 text = text.lower() --> 189 pos_tags = pos_tag(text) 190 return any(tag in POS_VERB_TAGS for _, tag in pos_tags)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/unstructured/nlp/tokenize.py:55, in pos_tag(text) 53 for sentence in sentences: 54 tokens = _word_tokenize(sentence) ---> 55 parts_of_speech.extend(_pos_tag(tokens)) 56 return parts_of_speech
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/nltk/tag/__init__.py:165, in pos_tag(tokens, tagset, lang) 140 def pos_tag(tokens, tagset=None, lang="eng"😞 141 """ 142 Use NLTK's currently recommended part of speech tagger to 143 tag the given list of tokens. (...) 163 :rtype: list(tuple(str, str)) 164 """ --> 165 tagger = _get_tagger(lang) 166 return _pos_tag(tokens, tagset, tagger, lang)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/nltk/tag/__init__.py:107, in _get_tagger(lang) 105 tagger = PerceptronTagger(lang=lang) 106 else: --> 107 tagger = PerceptronTagger() 108 return tagger
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/nltk/tag/perceptron.py:183, in PerceptronTagger.__init__(self, load, lang) 181 self.classes = set() 182 if load: --> 183 self.load_from_json(lang)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/nltk/tag/perceptron.py:273, in PerceptronTagger.load_from_json(self, lang) 271 def load_from_json(self, lang="eng"😞 272 # Automatically find path to the tagger if location is not specified. --> 273 loc = find(f"taggers/averaged_perceptron_tagger_{lang}/") 274 with open(loc + TAGGER_JSONS[lang]["weights"]) as fin: 275 self.model.weights = json.load(fin)
File /local_disk0/.ephemeral_nfs/envs/pythonEnv-2534a48d-f9f7-4daf-934e-2d9e08931bf6/lib/python3.10/site-packages/nltk/data.py:582, in find(resource_name, paths) 580 sep = "*" * 70 581 resource_not_found = f"\n{sep}\n{msg}\n{sep}\n" --> 582 raise LookupError(resource_not_found)
1 REPLY 1

Kaniz_Fatma
Community Manager
Community Manager

Hi @cleversureshYou're encountering a LookupError because the averaged_perceptron_tagger_eng resource is missing.

To fix it, run this in a new cell:

python import nltk nltk.download('averaged_perceptron_tagger_eng')

This will download the necessary resources. If you still face issues, ensure your NLTK data directory is set up correctly and accessible.

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group