@Cristian Martinezโ :
In Databricks, you need to import the necessary classes from the pyspark.sql.types module in order to use them in your code. To fix the NameError you're encountering with the label "name 'DoubleType' is not defined" in Exercise 2.0, you can add the following line at the beginning of your notebook:
from pyspark.sql.types import DoubleType
This will import the DoubleType class and make it available for use in your code. You can then use it in your code like this:
from pyspark.sql.types import DoubleType
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml.evaluation import RegressionEvaluator
# Define the schema for the input data
schema = StructType([
StructField("x1", DoubleType(), True),
StructField("x2", DoubleType(), True),
StructField("x3", DoubleType(), True),
StructField("y", DoubleType(), True)
])
# Load the input data from a CSV file
data = spark.read.csv("dbfs:/path/to/your/data.csv", header=True, schema=schema)
# Create a VectorAssembler to combine the input columns into a single feature column
assembler = VectorAssembler(inputCols=["x1", "x2", "x3"], outputCol="features")
# Transform the input data using the VectorAssembler
data = assembler.transform(data)
# Split the input data into training and testing sets
train, test = data.randomSplit([0.7, 0.3])
# Train a linear regression model on the training data
lr = LinearRegression(featuresCol="features", labelCol="y")
model = lr.fit(train)
# Evaluate the model on the testing data
evaluator = RegressionEvaluator(labelCol="y", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(model.transform(test))
print("RMSE on testing data: %g" % rmse)
Note that you should replace "dbfs:/path/to/your/data.csv" with the actual path to your input data file.