Getting errors in DLT Pipeline while using ML Model
Options
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
01-24-2023 10:35 PM
I am getting the following error when I try to run ML Models in Delta live Table Pipeline
File "/local_disk0/.ephemeral_nfs/repl_tmp_data/ReplId-55c61-9b898-2c4b6-d/mlflow/envs/virtualenv_envs/mlflow-888f8c9b966409e6bddca3894244b4df9d1f94c1/lib/python3.9/site-packages/databricks_cli/configure/provider.py", line 134, in get_config
raise InvalidConfigurationError.for_profile(None)
databricks_cli.utils.InvalidConfigurationError: You haven't configured the CLI yet! Please configure by entering `/local_disk0/.ephemeral_nfs/repl_tmp_data/ReplId-55c61-9b898-2c4b6-d/mlflow/envs/virtualenv_envs/mlflow-888f8c9b966409e6bddca3894244b4df9d1f94c1/bin/gunicorn configure`
Any pointers to solve this will be helpful, thanks.
Labels:
- Labels:
-
Delta
-
Delta Live Tables
-
DLT Pipeline
-
MLModels
1 REPLY 1
Options
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
04-27-2023 09:17 AM
@Vittal Pai - In general, please follow the below steps for the mlflow CLI error,
Step 1: set up API token and create secrets as mentioned in the below document
Step 2: embed the below piece of code at the top of your notebook
import os
os.environ["DATABRICKS_TOKEN"] = access_token
os.environ["DATABRICKS_HOST"] = "https://<workspace-url>;"
access_token = dbutils.secrets.get(scope="{<secret-name>}", key="mlflow-access-token")
from databricks_cli.configure import provider
config_provider = provider.EnvironmentVariableConfigProvider()
provider.set_config_provider(config_provider)
In case you face an issue, Please ensure the token is refreshed, as the token has a shell life.

