Hi!
Do you know if it's correct to use the plain user and token for installing a custom dependency (an internal python package) in a mlflow registered model? (it's the only way I get it working because if not it can't install the dependency) It works, but I don't know if this is something dangerous or insecure because I usually use the databricks secrets like this:
%pip install git+https://{dbutils.secrets.get(scope="<my-scope>", key="<user>")}:{dbutils.secrets.get(scope="<scope>", key="<scope>")}@dev.azure.com/<company>/<git-package-project>@<version>
so my conda.yaml for the mlflow is with the plain values:
channels:
- conda-forge
dependencies:
- python=<version>
- pip==22.3.1
- pip:
- mlflow==2.8.1
- git+https://<plain value of the user>:<plain value of the token>@dev.azure.com/<company>/<git-package-project>@<version>
name: mlflow-env
note that in my yaml the values are the output of `dbutils.secrets.get(scope="<my-scope>", key="<user>")` and the other one