cancel
Showing results for 
Search instead for 
Did you mean: 
Machine Learning
Dive into the world of machine learning on the Databricks platform. Explore discussions on algorithms, model training, deployment, and more. Connect with ML enthusiasts and experts.
cancel
Showing results for 
Search instead for 
Did you mean: 

The model is always stuck in pending state, while the serving status says ready.

haylee
New Contributor II

I am serving a logistic regression model, and I keep getting this error. The issue tends to happen as more data is being modeled, but no matter how much I increase the serving cluster memory, it still error. Here is the stack trace:

22/06/14 15:24:47 WARN TaskSetManager: Lost task 0.0 in stage 17.0 (TID 17) (10.24.7.205 executor driver): TaskResultLost (result lost from block manager)

22/06/14 15:24:47 ERROR TaskSetManager: Task 0 in stage 17.0 failed 1 times; aborting job

22/06/14 15:24:47 ERROR Instrumentation: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 17.0 failed 1 times, most recent failure: Lost task 0.0 in stage 17.0 (TID 17) (10.24.7.205 executor driver): TaskResultLost (result lost from block manager)

Driver stacktrace:

at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2403)

at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2352)

at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2351)

at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)

at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)

at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)

at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2351)

at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1109)

at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1109)

at scala.Option.foreach(Option.scala:407)

at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1109)

at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2591)

at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2533)

at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2522)

at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)

at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:898)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:2214)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:2235)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:2254)

at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:476)

at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429)

at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48)

at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715)

at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728)

at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706)

at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)

at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)

at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)

at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)

at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)

at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704)

at org.apache.spark.sql.Dataset.head(Dataset.scala:2728)

at org.apache.spark.sql.Dataset.head(Dataset.scala:2735)

at org.apache.spark.ml.classification.LogisticRegressionModel$LogisticRegressionModelReader.load(LogisticRegression.scala:1352)

at org.apache.spark.ml.classification.LogisticRegressionModel$LogisticRegressionModelReader.load(LogisticRegression.scala:1324)

at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$load$5(Pipeline.scala:277)

at org.apache.spark.ml.MLEvents.withLoadInstanceEvent(events.scala:160)

at org.apache.spark.ml.MLEvents.withLoadInstanceEvent$(events.scala:155)

at org.apache.spark.ml.util.Instrumentation.withLoadInstanceEvent(Instrumentation.scala:42)

at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$load$4(Pipeline.scala:277)

at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286)

at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36)

at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33)

at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:198)

at scala.collection.TraversableLike.map(TraversableLike.scala:286)

at scala.collection.TraversableLike.map$(TraversableLike.scala:279)

at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:198)

at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$load$3(Pipeline.scala:274)

at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191)

at scala.util.Try$.apply(Try.scala:213)

at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191)

at org.apache.spark.ml.Pipeline$SharedReadWrite$.load(Pipeline.scala:268)

at org.apache.spark.ml.PipelineModel$PipelineModelReader.$anonfun$load$7(Pipeline.scala:356)

at org.apache.spark.ml.MLEvents.withLoadInstanceEvent(events.scala:160)

at org.apache.spark.ml.MLEvents.withLoadInstanceEvent$(events.scala:155)

at org.apache.spark.ml.util.Instrumentation.withLoadInstanceEvent(Instrumentation.scala:42)

at org.apache.spark.ml.PipelineModel$PipelineModelReader.$anonfun$load$6(Pipeline.scala:355)

at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191)

at scala.util.Try$.apply(Try.scala:213)

at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191)

at org.apache.spark.ml.PipelineModel$PipelineModelReader.load(Pipeline.scala:355)

at org.apache.spark.ml.PipelineModel$PipelineModelReader.load(Pipeline.scala:349)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:498)

at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)

at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)

at py4j.Gateway.invoke(Gateway.java:282)

at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)

at py4j.commands.CallCommand.execute(CallCommand.java:79)

at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)

at py4j.ClientServerConnection.run(ClientServerConnection.java:106)

at java.lang.Thread.run(Thread.java:748)

0 REPLIES 0

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group