df_CorpBond= spark.read.format("parquet").option("header", "true").load(f"/mnt/{container_name}/raw_data/dsl.corporate.parquet")
df_CorpBond.repartition(20).write\
.format("jdbc")\
.option("url", url_connector)\
.option("dbtable", "MarkIt_CorpBonds")\
.option("user", user)\
.option("password", pwd)\
.option("driver", "com.microsoft.sqlserver.jdbc.SQLServerDriver")\
.option("numPartitions", 100)\
.option("batchsize", 100000)\
.mode("overwrite")\
.save()
this is my code to load 2.3 gb blob data into ssms table job will take more than 2 hours my cluster size is 94gb and have 1 driver node and 2 worker node how we can optimize the code