01-03-2017 03:42 PM
This is an expensive and long-running job that gets about halfway done before failing. The stack trace is included below, but here is the salient part:
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 4881 in stage 1.0 failed 4 times, most recent failure: Lost task 4881.3 in stage 1.0 (TID 7305, 10.37.129.129): ExecutorLostFailure (executor 116 exited caused by one of the running tasks) Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
This job has been running fine for months up to this point. I have tried increasing the node size, but still receiving this error. I saw from a Google search that this might be YARN not having enough provisioned memory, but I was under the impression that it was all configured under the hood with Databricks. Should I try tweaking these values? If so which?
Here is the full stack-trace:
---------------------------------------------------------------------------Py4JJavaError Traceback (most recent call last)
<ipython-input-2-b42178413d3f> in <module>() 254 )
255--> 256final_data.write .format('com.databricks.spark.redshift').option('preactions', delete_stmt).option('url', REDSHIFT_URL).option('dbtable', load_table).option('tempdir', REDSHIFT_TEMPDIR +'/courses_monthly').mode("append").save()/databricks/spark/python/pyspark/sql/readwriter.py in save(self, path, format, mode, partitionBy, **options) 528 self.format(format) 529if path is None:--> 530self._jwrite.save() 531else: 532 self._jwrite.save(path)/databricks/spark/python/lib/py4j-0.10.1-src.zip/py4j/java_gateway.py in __call__(self, *args) 931 answer = self.gateway_client.send_command(command) 932 return_value = get_return_value(
--> 933 answer, self.gateway_client, self.target_id, self.name)
934 935for temp_arg in temp_args:/databricks/spark/python/pyspark/sql/utils.py in deco(*a, **kw) 61def deco(*a,**kw): 62try:---> 63return f(*a,**kw) 64except py4j.protocol.Py4JJavaError as e: 65 s = e.java_exception.toString()/databricks/spark/python/lib/py4j-0.10.1-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name) 310 raise Py4JJavaError(
311"An error occurred while calling {0}{1}{2}.\n".--> 312 format(target_id, ".", name), value)
313else: 314 raise Py4JError(
Py4JJavaError: An error occurred while calling o305.save.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelationCommand.scala:149)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1.apply(InsertIntoHadoopFsRelationCommand.scala:115)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1.apply(InsertIntoHadoopFsRelationCommand.scala:115)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:115)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:60)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:58)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:136)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:133)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:114)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:86)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:511)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:211)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:194)
at com.databricks.spark.redshift.RedshiftWriter.unloadData(RedshiftWriter.scala:278)
at com.databricks.spark.redshift.RedshiftWriter.saveToRedshift(RedshiftWriter.scala:346)
at com.databricks.spark.redshift.DefaultSource.createRelation(DefaultSource.scala:106)
at org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:443)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:211)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:128)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:211)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 4881 in stage 1.0 failed 4 times, most recent failure: Lost task 4881.3 in stage 1.0 (TID 7305, 10.37.129.129): ExecutorLostFailure (executor 116 exited caused by one of the running tasks) Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1452)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1440)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1439)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1439)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1665)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1620)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1609)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1868)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1881)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1901)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelationCommand.scala:143)
... 34 more
12-10-2019 08:36 AM
Job output, such as log output emitted to stdout, is subject to a 20MB size limit. If the total output has a larger size, the run will be canceled and marked as failed.
That was my problem, to "fix it" I've just set the logging level to ERRORval sc = SparkContext.getOrCreate(conf) sc.setLogLevel("ERROR")It was solved12-10-2019 11:56 AM
According to https://docs.databricks.com/jobs.html#jar-job-tips:
"Job output, such as log output emitted to stdout, is subject to a 20MB size limit. If the total output has a larger size, the run will be canceled and marked as failed."That was my problem, to "fix it" I've just set the logging level to ERRORval sc = SparkContext.getOrCreate(conf)sc.setLogLevel("ERROR")This workaround works for me01-20-2020 02:20 AM
I am facing the same error but the log output to stdout is not an issue as the log file size turns out to be < 2 MB. So that issue is ruled out. Moreover, our job is dummy for testing purposes and is not doing any memory intensive operation. Its purely running a simple thread that keeps on logging to the stdout every 5 mins.
Still the cluster is getting timed out.
Below is the post i have submitted on stack overflow.
Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.
If there isn’t a group near you, start one and help create a community that brings people together.
Request a New Group