cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

ForeachBatch() - Get results from batchDF._jdf.sparkSession().sql('merge stmt')

jm99
New Contributor III

Most python examples show the structure of the foreachBatch method as:

def foreachBatchFunc(batchDF, batchId):
    batchDF.createOrReplaceTempView('viewName')
    
    (
        batchDF
            ._jdf.sparkSession()
            .sql(
                """
   <<   merge statement >>
 
               """
    )

._jdf.sparkSession().sql() returns a java object not a dataframe

How do you get access to the results dataframe containing the (affected, inserted, updated, deleted) row counts?

1 ACCEPTED SOLUTION

Accepted Solutions

jm99
New Contributor III

Just found a solution...

Need to convert the Java Dataframe (jdf) to a DataFrame

from pyspark import sql
 
def batchFunc(batchDF, batchId):
  batchDF.createOrReplaceTempView('viewName')
  sparkSession = batchDF._jdf.sparkSession()
 
  resJdf = sparkSession .sql('merge statement')
 
  resultDf = sql.DataFrame(resJdf, batchDF.sql_ctx)
  firstRow = resultDf.first()
 
  insertedRowCount = 0
  updatedRowCount = 0
  deletedRowCount = 0
  affectedRowCount = 0
 
  if firstRow:
      if ('num_affected_rows' in resultDf .columns):
          affectedRowCount += firstRow['num_affected_rows']
      if ('num_inserted_rows' in resultDf .columns):
          insertedRowCount += firstRow['num_inserted_rows']
      if ('num_updated_rows' in resultDf .columns):
          updatedRowCount += firstRow['num_updated_rows']
      if ('num_deleted_rows' in resultDf .columns):
          deletedRowCount += firstRow['num_deleted_rows']  
 
  # do what you want with the counts!

View solution in original post

1 REPLY 1

jm99
New Contributor III

Just found a solution...

Need to convert the Java Dataframe (jdf) to a DataFrame

from pyspark import sql
 
def batchFunc(batchDF, batchId):
  batchDF.createOrReplaceTempView('viewName')
  sparkSession = batchDF._jdf.sparkSession()
 
  resJdf = sparkSession .sql('merge statement')
 
  resultDf = sql.DataFrame(resJdf, batchDF.sql_ctx)
  firstRow = resultDf.first()
 
  insertedRowCount = 0
  updatedRowCount = 0
  deletedRowCount = 0
  affectedRowCount = 0
 
  if firstRow:
      if ('num_affected_rows' in resultDf .columns):
          affectedRowCount += firstRow['num_affected_rows']
      if ('num_inserted_rows' in resultDf .columns):
          insertedRowCount += firstRow['num_inserted_rows']
      if ('num_updated_rows' in resultDf .columns):
          updatedRowCount += firstRow['num_updated_rows']
      if ('num_deleted_rows' in resultDf .columns):
          deletedRowCount += firstRow['num_deleted_rows']  
 
  # do what you want with the counts!

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group