cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

How to access bronze dlt in silver dlt

issa
Visitor

I have a job in Workflows thatt runs two DLT pipelines, one for Bronze_Transaction and on for Silver_Transaction. The reason for two DLT pipelines is because i want the tables to be created in bronze catalog and erp schema, and silver catalog and erp schema.

The notebooks for each DLT are:
Bronze:

import dlt
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, lit, expr
from pyspark.sql.functions import round, unix_timestamp, current_timestamp
from pyspark.sql import functions as F
from pyspark.sql.types import *


storage_account = 'xxxxxxxxx'
container = 'xxxxxxxxxxxxx'
landing_path = 'Landing/Transactions'
landing_json_path = f"abfss://{container}@{storage_account}.dfs.core.windows.net/{landing_path}"

# Transactions_Bronze
# Serve as the raw source for downstream processing in silver or gold tables in the Delta Lakehouse.

@dlt.table(
    name = "Transactions_Bronze",
    table_properties={
        "delta.enableChangeDataFeed": "true",
        "quality": "bronze"
    }
)

def Transactions_Bronze():
    # Read data from JSON files
    df = (spark.readStream.format("cloudFiles")
          .option("cloudFiles.format", "json")
          .option("inferSchema", True)
          .option("cloudFiles.inferColumnTypes", "true")
          .option("recursiveFileLookup", "true")
          .load(landing_json_path)
          )

    # Add metdadata column for insertion time
    df = df.withColumn("SDA_Inserted", F.date_format(current_timestamp(), "yyyy-mm-dd HH:mm:ss"))
    return df


SILVER:

import dlt
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, lit, expr
from pyspark.sql.functions import round, unix_timestamp, current_timestamp
from pyspark.sql import functions as F
from pyspark.sql.types import *

# Transactions_Silver
dlt.create_streaming_table(
    name="Transactions_Silver",  # No database qualifier in the table name
    table_properties={
        "quality": "silver"
    }
)

# Define the path to the external table
bronze_df = (
    spark.readStream
    .format("delta")
    .table("bronze.erp.Transactions_Bronze")
)

# Apply changes from bronze to silver
dlt.apply_changes(
    source=bronze_df, #first i tried to just write bronze.erp.transactions_bronze, but that failed to
    target="Transactions_Silver",
    keys=["Company", "VoucherType", "AccountingYear", "VoucherNo", "RowNo"],
    stored_as_scd_type="2",
    sequence_by="Inserted"
)

 
The bronze works without any issue, but the workflows fails on silver dlt: The error message I get is:
"timestamp": "2024-11-29T09:03:48.672Z",
"message": "Failed to resolve flow: 'transactions_silver'.",
"level": "ERROR",
"error": {
"exceptions": [
{
"class_name": "pyspark.errors.exceptions.base.PySparkAttributeError",
"message": "Traceback (most recent call last):\npyspark.errors.exceptions.base.PySparkAttributeError: [ATTRIBUTE_NOT_SUPPORTED] Attribute `_get_object_id` is not supported.",
"error_class": "ATTRIBUTE_NOT_SUPPORTED"
}
],
"fatal": true
},
"details": {
"flow_progress": {
"status": "FAILED"
}

Appreciative for all help I can get with this one
0 REPLIES 0

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group