cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

Issue with complex json based data frame select

cmotla
New Contributor III

We are getting the below error when trying to select the nested columns (string type in a struct) even though we don't have more than a 1000 records in the data frame. The schema is very complex and has few columns as struct type and few as array type (not selected for processing). We are using Spark 2.4.5 for processing. Please share us inputs on how we can resolve this issue.

Py4JJavaError: An error occurred while calling o18602.collectToPythonFile.
: java.lang.StringIndexOutOfBoundsException: String index out of range: 2147483647
	at java.lang.String.charAt(String.java:658)
	at scala.collection.immutable.StringOps$.apply$extension(StringOps.scala:37)
	at org.apache.af.a(af.java)
	at org.apache.af.apply(af.java)
	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
	at org.apache.bm.b(bm.java)
	at org.apache.ar.a(ar.java)
	at org.apache.ar.apply(ar.java)
	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
	at org.apache.bm.a(bm.java)
	at org.apache.bm.b(bm.java)
	at org.apache.bm.apply(bm.java)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:112)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:109)
	at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
	at scala.collection.immutable.List.foldLeft(List.scala:84)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:109)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:101)
	at scala.collection.immutable.List.foreach(List.scala:392)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:101)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$executeAndTrack$1.apply(RuleExecutor.scala:80)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$executeAndTrack$1.apply(RuleExecutor.scala:80)
	at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:79)
	at org.apache.spark.sql.execution.QueryExecution$$anonfun$optimizedPlan$1.apply(QueryExecution.scala:96)
	at org.apache.spark.sql.execution.QueryExecution$$anonfun$optimizedPlan$1.apply(QueryExecution.scala:96)
	at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111)
	at org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:95)
	at org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:95)
	at org.apache.spark.sql.execution.QueryExecution$$anonfun$toString$2.apply(QueryExecution.scala:248)
	at org.apache.spark.sql.execution.QueryExecution$$anonfun$toString$2.apply(QueryExecution.scala:248)
	at org.apache.spark.sql.execution.QueryExecution.stringOrError(QueryExecution.scala:132)
	at org.apache.spark.sql.execution.QueryExecution.toString(QueryExecution.scala:248)
	at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv$1.apply(SQLExecution.scala:104)
	at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:243)
	at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:99)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:173)
	at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withAction(Dataset.scala:3487)
	at org.apache.spark.sql.Dataset$$anonfun$collectToPythonFile$1.apply(Dataset.scala:3373)
	at org.apache.spark.sql.Dataset$$anonfun$collectToPythonFile$1.apply(Dataset.scala:3372)
	at org.apache.spark.api.python.PythonSecurityUtils$$anonfun$withSafePythonFileForUser$2.apply(PythonSecurityUtils.scala:290)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1541)
	at org.apache.spark.api.python.PythonSecurityUtils$.withSafePythonFileForUser(PythonSecurityUtils.scala:302)
	at org.apache.spark.sql.Dataset.collectToPythonFile(Dataset.scala:3372)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
	at py4j.Gateway.invoke(Gateway.java:295)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.GatewayConnection.run(GatewayConnection.java:251)
	at java.lang.Thread.run(Thread.java:748)

1 REPLY 1

Hubert-Dudek
Esteemed Contributor III

Please share your code and some example of data.

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group