03-15-2023 06:14 AM
I am writing data to the azure cosmos db using OLTP connector using below code
cfg["spark.cosmos.write.strategy"]="ItemOverwrite"
json_df.write.format("cosmos.oltp").options(**cfg).mode("APPEND").save()
I am getting below error
Please let me know if you have faced similar issue or if you have any fix.
Feel free to ask more details
03-15-2023 11:10 PM
Hi, could you please post the whole text of the error (not the screenshot.)?
Please tag @Debayan with your next response which will notify me, Thank you!
03-15-2023 11:20 PM
Hi @Debayan Mukherjee
Here is the error message
An error occurred while calling o1616.save.
: org.apache.spark.SparkException: Job aborted due to stage failure: Authorized committer (attemptNumber=0, stage=1306, partition=0) failed; but task commit success, data duplication may happen. reason=TaskKilled(preempted by scheduler,Vector(AccumulableInfo(61880,None,Some(248166),None,false,true,None), AccumulableInfo(61882,None,Some(0),None,false,true,None), AccumulableInfo(61883,None,Some(430),None,false,true,None), AccumulableInfo(61901,None,Some(19155841),None,false,true,None), AccumulableInfo(61902,None,Some(4240),None,false,true,None), AccumulableInfo(61903,None,Some(134710060),None,false,true,None), AccumulableInfo(61904,None,Some(19155841),None,false,true,None), AccumulableInfo(61909,None,Some(0),None,false,true,None), AccumulableInfo(61910,None,Some(19155841),None,false,true,None), AccumulableInfo(61911,None,Some(8),None,false,true,None), AccumulableInfo(61912,None,Some(395),None,false,true,None), AccumulableInfo(61913,None,Some(0),None,false,true,None), AccumulableInfo(61914,None,Some(0),None,false,true,None)),Vector(LongAccumulator(id: 61880, name: Some(internal.metrics.executorRunTime), value: 248166), LongAccumulator(id: 61882, name: Some(internal.metrics.resultSize), value: 0), LongAccumulator(id: 61883, name: Some(internal.metrics.jvmGCTime), value: 430), LongAccumulator(id: 61901, name: Some(internal.metrics.input.bytesRead), value: 19155841), LongAccumulator(id: 61902, name: Some(internal.metrics.input.recordsRead), value: 4240), LongAccumulator(id: 61903, name: Some(internal.metrics.input.sampledTimeReadNano), value: 134710060), LongAccumulator(id: 61904, name: Some(internal.metrics.input.sampledBytesRead), value: 19155841), LongAccumulator(id: 61909, name: Some(internal.metrics.io.requestBytesCount), value: 0), LongAccumulator(id: 61910, name: Some(internal.metrics.io.responseBytesCount), value: 19155841), LongAccumulator(id: 61911, name: Some(internal.metrics.io.requestCount), value: 8), LongAccumulator(id: 61912, name: Some(internal.metrics.io.requestMsDuration), value: 395), LongAccumulator(id: 61913, name: Some(internal.metrics.io.retryCount), value: 0), LongAccumulator(id: 61914, name: Some(internal.metrics.io.retryDelayMsDuration), value: 0)),WrappedArray(1757792296, 367759552, 0, 0, 4755036, 0, 4755036, 0, 14168641, 0, 0, 0, 0, 0, 0, 0, 64, 4546, 7, 3349, 7895))
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:3334)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:3266)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:3257)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:3257)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleStageFailed$1(DAGScheduler.scala:1418)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleStageFailed$1$adapted(DAGScheduler.scala:1418)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleStageFailed(DAGScheduler.scala:1418)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3543)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:3484)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:3472)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:51)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$runJob$1(DAGScheduler.scala:1172)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:1160)
at org.apache.spark.SparkContext.runJobInternal(SparkContext.scala:2731)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2714)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2(WriteToDataSourceV2Exec.scala:388)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2$(WriteToDataSourceV2Exec.scala:364)
at org.apache.spark.sql.execution.datasources.v2.AppendDataExec.writeWithV2(WriteToDataSourceV2Exec.scala:250)
at org.apache.spark.sql.execution.datasources.v2.V2ExistingTableWriteExec.run(WriteToDataSourceV2Exec.scala:343)
at org.apache.spark.sql.execution.datasources.v2.V2ExistingTableWriteExec.run$(WriteToDataSourceV2Exec.scala:342)
at org.apache.spark.sql.execution.datasources.v2.AppendDataExec.run(WriteToDataSourceV2Exec.scala:250)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.$anonfun$result$1(V2CommandExec.scala:47)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:47)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:45)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:54)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$$nestedInanonfun$eagerlyExecuteCommands$1$1.$anonfun$applyOrElse$3(QueryExecution.scala:238)
at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:153)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$$nestedInanonfun$eagerlyExecuteCommands$1$1.$anonfun$applyOrElse$2(QueryExecution.scala:238)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$8(SQLExecution.scala:227)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:410)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$1(SQLExecution.scala:172)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1035)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:122)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:360)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$$nestedInanonfun$eagerlyExecuteCommands$1$1.$anonfun$applyOrElse$1(QueryExecution.scala:237)
at org.apache.spark.sql.execution.QueryExecution.org$apache$spark$sql$execution$QueryExecution$$withMVTagsIfNecessary(QueryExecution.scala:220)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$$nestedInanonfun$eagerlyExecuteCommands$1$1.applyOrElse(QueryExecution.scala:233)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$$nestedInanonfun$eagerlyExecuteCommands$1$1.applyOrElse(QueryExecution.scala:226)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:519)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:106)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:519)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:31)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:316)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:312)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:495)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$eagerlyExecuteCommands$1(QueryExecution.scala:226)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:372)
at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:226)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:180)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:171)
at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:287)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:964)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:346)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:258)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
at py4j.Gateway.invoke(Gateway.java:306)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:195)
at py4j.ClientServerConnection.run(ClientServerConnection.java:115)
at java.lang.Thread.run(Thread.java:750)
03-20-2023 09:09 AM
Hi, I do not see any exact error on the issue, primarily it is looking there is connection issue from control plane to data plane. It would be better if you could raise a case to Databricks support on the same and we can triage it.
03-18-2023 09:47 PM
Hi @Manasa Kalluri
Thank you for your question! To assist you better, please take a moment to review the answer and let me know if it best fits your needs.
Please help us select the best solution by clicking on "Select As Best" if it does.
Your feedback will help us ensure that we are providing the best possible service to you.
Thank you!
Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.
If there isn’t a group near you, start one and help create a community that brings people together.
Request a New Group