@MerelyPerfect Per :
When using Autoloader in Databricks, the schema inference is done based on the first few rows of the data. If your JSON files have a consistent structure, you can try setting the "inferSchema" option to "true" in the Autoloader options. This will make Autoloader attempt to infer the schema from the first few rows of the data.
Here's an example of how you can use Autoloader with schema inference in Databricks:
python
from pyspark.sql.functions import from_json, col
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
# Define the schema hints
schema_hints = StructType([
StructField("offset", IntegerType()),
StructField("value", StringType())
])
# Define the Autoloader options
options = {
"schema": schema_hints.json(),
"inferSchema": "true"
}
# Load the data using Autoloader
df = spark.read.format("cloudFiles") \
.options(**options) \
.load("abfss://mycontainer@myaccount.dfs.core.windows.net/myfolder/*.json")
# Parse the "value" column from base64 to JSON
df = df.withColumn("value", from_json(col("value").cast("string"), schema_hints["value"].dataType))
# Show the resulting DataFrame
df.show()
In this example, we first define the schema hints for the two fields, "offset" and "value". Then, we define the Autoloader options and set "inferSchema" to "true". This tells Autoloader to attempt to infer the schema from the data.
We then load the data using Autoloader and parse the "value" column from base64 to JSON using the
from_json function. Finally, we show the resulting DataFrame.
If your JSON files have a more complex structure that cannot be inferred from the first few rows of the data, you may need to manually define the schema using the schema hints.