cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

Schema definition help in scala notebook in databricks !!!!!!!1

Ruby8376
Valued Contributor

I am building schema for an incoming avro file(json message) and creating a final dataframe for it. The schema built looks fine as per the json sample message provided but I am getting null values in all the fields. Can somebody look at this code and tell me if I am doing anything wrong?

this is json message:{
"schemaVersion": 4,
"timeStamp": "2021-10-05T08:39:03.201+05:30",
"messageState": "new",
"eventId": 28901,
"eventTimeStamp": "2021-10-05T08:39:03.174+05:30",
"machineDetail": {
"serialNumber": "ERS00075",
"name": "TRK15"
},
"serviceMeterHours": {
"value": 754,
"unit": "hr"
},
"eventDetail": {
"name": "TEST-Machine Maintenance Event Activate 2554",
"description": "TEST-Jacket Water to Engine Oil Temp Low Warning",
"typeId": "1",
"typeDescription": "Low",
"severity": "1",
"severityDescription": "Maintenance"
},
"failureModeDetail": {
"id": 21,
"description": "Data erratic, intermittent or incorrect."
},
"durationSeconds": 18894.0,
"tolerance": {
"trigger": {
"value": 635.56,
"reason": "High",
"unit": "t"
},
"worst": {
"value": 433.94,
"reason": "High",
"unit": "t"
}
},
"sourceDetails": {
"id": 279,
"description": "Alarm Module #1"
},
"positionDetails": {
"global": {
"lat": 33.200424,
"lon": 435.99,
"elv": 69.0
}
}
}

 

My code:

import org.apache.spark.sql.types._

def buildSchema(): StructType = {
  return new StructType()
  .add("data", new StructType()
    .add("schemaVersion", IntegerType)
    // .add("timeStamp", StringType)
    // .add("messageState", StringType)
    // .add("eventId", LongType)
    // .add("eventTimeStamp", StringType)
  //   .add("machineDetail", new StructType()
  //     .add("serialNumber", StringType)
  //     .add("name", StringType)
  //   )
  //   .add("serviceMeterHours", new StructType()
  //     .add("value", IntegerType)
  //     .add("unit", StringType)
  //   )
  //   .add("eventDetail", new StructType()
  //     .add("name", StringType)
  //     .add("typeId", StringType)
  //     .add("typeDescription", StringType)
  //     .add("severity", StringType)
  //     .add("description", StringType)
  //     .add("severityDescription", StringType)
  //   )
  //   .add("failureModeDetail", new StructType()
  //     .add("id", IntegerType)
  //     .add("description", StringType)
  //   )
  //   .add("durationSeconds", DoubleType)
  //   .add("tolerance", new StructType()
  //     .add("trigger", new StructType()
  //       .add("value", DoubleType)
  //       .add("reason", StringType)
  //       .add("unit", StringType)
  //     )
  //     .add("worst", new StructType()
  //       .add("value", DoubleType)
  //       .add("reason", StringType)
  //       .add("unit", StringType)
  //     )
  //   )
  //   .add("sourceDetails", new StructType()
  //     .add("id", IntegerType)
  //     .add("description", StringType)
  //   )
  //   .add("positionDetails", new StructType()
  //     .add("global", new StructType()
  //       .add("lat", DoubleType)
  //       .add("lon", DoubleType)
  //       .add("elv", DoubleType)
  //     )
   )
   )
}
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.functions.{col, explode, from_json, substring}
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions.{callUDF, from_json, substring}

val mySchema = buildSchema()

def healthdataeventStream(stream: DataFrame, schema: StructType😞 DataFrame = {
  val hdestream = stream
    .withColumn("Partition", substring(input_file_name(), -6, 1))
    .withColumn("Body", from_json(col("Body").cast("string"), schema))
    .withColumn("Data", col("Body.data"))

  val flattenedData = hdestream.select(
    $"Data.schemaVersion",
    $"Data.timeStamp",
    $"Data.messageState",
    $"Data.eventId",
    $"Data.eventTimeStamp",
    $"Data.machineDetail.serialNumber",
    $"Data.machineDetail.name",
    $"Data.serviceMeterHours.value",
    $"Data.serviceMeterHours.unit",
    $"Data.eventDetail.name",
    $"Data.eventDetail.description",
    $"Data.eventDetail.typeId",
    $"Data.eventDetail.typeDescription",
    $"Data.eventDetail.severity",
    $"Data.eventDetail.severityDescription",
    $"Data.failureModeDetail.id",
    $"Data.failureModeDetail.description",
    $"Data.durationSeconds",
    $"Data.tolerance.trigger.value".as("tolerance_trigger_value"),
    $"Data.tolerance.trigger.reason".as("tolerance_trigger_reason"),
    $"Data.tolerance.trigger.unit".as("tolerance_trigger_unit"),
    $"Data.tolerance.worst.value".as("tolerance_worst_value"),
    $"Data.tolerance.worst.reason".as("tolerance_worst_reason"),
    $"Data.tolerance.worst.unit".as("tolerance_worst_unit"),
    $"Data.sourceDetails.id",
    $"Data.sourceDetails.description",
    $"Data.positionDetails.global.lat",
    $"Data.positionDetails.global.lon",
    $"Data.positionDetails.global.elv"
  )

  flattenedData
}

 

0 REPLIES 0

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group