cancel
Showing results forย 
Search instead forย 
Did you mean:ย 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results forย 
Search instead forย 
Did you mean:ย 

Singleton Design Principle for pyspark database connectorย A singleton is a design pattern that ensures that a class has only one instance, and provide...

Prototype998
New Contributor III

Singleton Design Principle for pyspark database connector

A singleton is a design pattern that ensures that a class has only one instance, and provides a global access point to that instance. Here is an example of how you could implement a singleton design for a PySpark database connector in Python:

# Define the singleton decorator
def singleton(cls):
    instances = {}
    def get_instance(*args, **kwargs):
        if cls not in instances:
            instances[cls] = cls(*args, **kwargs)
        return instances[cls]
    return get_instance
 
# Define the MongoDBConnector class
@singleton
class MongoDBConnector:    
    def __init__(self, connection_string):
        self.spark = SparkSession.builder.getOrCreate()
        self.uri = connection_string
        self.dataframes = {}
    
    def connect(self, database_name, collection_name):
        key = (database_name, collection_name)
        if key not in self.dataframes:
            dataframe = self.spark.read.format("com.mongodb.spark.sql.DefaultSource").option("uri", self.uri).option("database", database_name).option("collection", collection_name).load()
            self.dataframes[key] = dataframe
        return self.dataframes[key]
    
    def get_dataframe(self, database_name, collection_name):
        key = (database_name, collection_name)
        if key in self.dataframes:
            return self.dataframes[key]
        else:
            return None
 
# Create an instance of the MongoDBConnector class
mongo_connector = MongoDBConnector(connectionString)
 
# Connect to the "sample_supplies" database and "sales" collection
df1 = mongo_connector.connect("sample_supplies", "sales")
 
# Connect to the "sample_airbnb" database and "listingsAndReviews" collection
df2 = mongo_connector.connect("sample_airbnb", "listingsAndReviews")
 
# Print the id values of the DataFrame objects
print(id(df1))
print(id(df2))
 
# Try to get the DataFrame object for the "sample_supplies" database and "sales" collection
df3 = mongo_connector.get_dataframe("sample_supplies", "sales")
 
# Print the id value of the DataFrame object
print(id(df3))
 
# Try to get the DataFrame object for the "sample_supplies" database and "sales" collection
df4 = mongo_connector.get_dataframe("sample_airbnb", "listingsAndReviews")
 
# Print the id value of the DataFrame object
print(id(df4))

source:-chatgpt

0 REPLIES 0

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you wonโ€™t want to miss the chance to attend and share knowledge.

If there isnโ€™t a group near you, start one and help create a community that brings people together.

Request a New Group