cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

The spark driver has stopped unexpectedly and is restarting. Your notebook will be automatically reattached.

JKR
Contributor

Getting below error

Context: Using Databricks shared interactive cluster for scheduled run multiple parallel jobs at the same time after every 5 mins. When I check Ganglia, driver node's memory reaches almost max and then restart of driver happens and the same process repeats. I'm not using any of the below operations:

  • collect() operator, which brings a large amount of data to the driver.
  • Conversion of a large DataFrame to Pandas DataFrame using the toPandas() function.

java.lang.OutOfMemoryError: unable to create new native thread

at java.lang.Thread.start0(Native Method)

at java.lang.Thread.start(Thread.java:719)

at java.util.concurrent.ThreadPoolExecutor.addWorker(ThreadPoolExecutor.java:957)

at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1367)

at scala.concurrent.impl.ExecutionContextImpl.execute(ExecutionContextImpl.scala:24)

at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:72)

at scala.concurrent.impl.Promise$KeptPromise$Kept.onComplete(Promise.scala:372)

at scala.concurrent.impl.Promise$KeptPromise$Kept.onComplete$(Promise.scala:371)

at scala.concurrent.impl.Promise$KeptPromise$Successful.onComplete(Promise.scala:379)

at scala.concurrent.impl.Promise.transform(Promise.scala:33)

at scala.concurrent.impl.Promise.transform$(Promise.scala:31)

at scala.concurrent.impl.Promise$KeptPromise$Successful.transform(Promise.scala:379)

at scala.concurrent.Future.map(Future.scala:292)

at scala.concurrent.Future.map$(Future.scala:292)

at scala.concurrent.impl.Promise$KeptPromise$Successful.map(Promise.scala:379)

at scala.concurrent.Future$.apply(Future.scala:659)

at com.databricks.backend.daemon.driver.JupyterKernelListener$BackgroundPollTask.start(JupyterKernelListener.scala:174)

at com.databricks.backend.daemon.driver.JupyterKernelListener.<init>(JupyterKernelListener.scala:340)

at com.databricks.backend.daemon.driver.JupyterDriverLocal.$anonfun$startPython$1(JupyterDriverLocal.scala:708)

at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)

at scala.util.Try$.apply(Try.scala:213)

at com.databricks.backend.daemon.driver.JupyterDriverLocal.com$databricks$backend$daemon$driver$JupyterDriverLocal$$withRetry(JupyterDriverLocal.scala:663)

at com.databricks.backend.daemon.driver.JupyterDriverLocal.startPython(JupyterDriverLocal.scala:680)

at com.databricks.backend.daemon.driver.JupyterDriverLocal.<init>(JupyterDriverLocal.scala:403)

at com.databricks.backend.daemon.driver.PythonDriverWrapper.instantiateDriver(DriverWrapper.scala:781)

at com.databricks.backend.daemon.driver.DriverWrapper.setupRepl(DriverWrapper.scala:350)

at com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:246)

at java.lang.Thread.run(Thread.java:750)

java.lang.OutOfMemoryError: unable to create new native thread

at java.lang.Thread.start0(Native Method)

at java.lang.Thread.start(Thread.java:719)

at java.util.concurrent.ThreadPoolExecutor.addWorker(ThreadPoolExecutor.java:957)

at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1367)

at scala.concurrent.impl.ExecutionContextImpl.execute(ExecutionContextImpl.scala:24)

at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:72)

at scala.concurrent.impl.Promise$KeptPromise$Kept.onComplete(Promise.scala:372)

at scala.concurrent.impl.Promise$KeptPromise$Kept.onComplete$(Promise.scala:371)

at scala.concurrent.impl.Promise$KeptPromise$Successful.onComplete(Promise.scala:379)

at scala.concurrent.impl.Promise.transform(Promise.scala:33)

at scala.concurrent.impl.Promise.transform$(Promise.scala:31)

at scala.concurrent.impl.Promise$KeptPromise$Successful.transform(Promise.scala:379)

at scala.concurrent.Future.map(Future.scala:292)

at scala.concurrent.Future.map$(Future.scala:292)

at scala.concurrent.impl.Promise$KeptPromise$Successful.map(Promise.scala:379)

at scala.concurrent.Future$.apply(Future.scala:659)

at com.databricks.backend.daemon.driver.JupyterKernelListener$BackgroundPollTask.start(JupyterKernelListener.scala:174)

at com.databricks.backend.daemon.driver.JupyterKernelListener.<init>(JupyterKernelListener.scala:340)

at com.databricks.backend.daemon.driver.JupyterDriverLocal.$anonfun$startPython$1(JupyterDriverLocal.scala:708)

at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)

at scala.util.Try$.apply(Try.scala:213)

at com.databricks.backend.daemon.driver.JupyterDriverLocal.com$databricks$backend$daemon$driver$JupyterDriverLocal$$withRetry(JupyterDriverLocal.scala:663)

at com.databricks.backend.daemon.driver.JupyterDriverLocal.startPython(JupyterDriverLocal.scala:680)

at com.databricks.backend.daemon.driver.JupyterDriverLocal.<init>(JupyterDriverLocal.scala:403)

at com.databricks.backend.daemon.driver.PythonDriverWrapper.instantiateDriver(DriverWrapper.scala:781)

at com.databricks.backend.daemon.driver.DriverWrapper.setupRepl(DriverWrapper.scala:350)

at com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:246)

at java.lang.Thread.run(Thread.java:750)

2 REPLIES 2

jose_gonzalez
Databricks Employee
Databricks Employee

please check the driver's logs, for example the log4j and the GC logs

@Jose Gonzalez​  Where can I find GC logs ? and what specifically I look for in log4j and GC logs ?

I want to understand why my driver is consuming that much RAM resources when jobs executed it must free the memory itself and let the other jobs use that memory.

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group