cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

Update DeltaTable on column type ArrayType(): add element to array

carlosancassani
New Contributor III

Hi all,

I need to perform an Update on a Delta Table adding elements to a column of ArrayType(StringType()) which is initialized empty.

Before Update

Col_1 StringType()Col_2 StringType()Col_3 ArrayType()
ValVal[ ]

After Update

Col_1 StringType()Col_2 StringType()Col_3 ArrayType()
ValVal[ 'append value' ]

I'm trying with Update syntax but a receive errors within the "set" statement since updated value type (StringType) is not consistent with target one - ArrayType(StringType()):

 

schema = StructType([ 
StructField("Load_id", StringType(), True), 
StructField("Task_id", StringType(), True), 
StructField("Task_output", StringType(), True), 
StructField("Task_output_detail", ArrayType(StringType()), True), StructField("Execution_ts", TimestampType(), True), 
StructField("Task_status", StringType(), True)]) 

#some code to init materialize the delta table

Task_output_detail = "Invalid value" 
Log_table = DeltaTable.forPath(spark, path) 
Log_table.update( 
condition = (col("Load_id")== Load_id) & (col("Task_id")== Task_id), 
set = { "Task_output": lit(Task_output), "Task_output_detail": Task_output_detail, "Execution_ts": lit(Execution_ts), "Task_status": lit('Closed')})

 


Does anyone know a "smart" solution or correct syntaxt to achieve that? I want to avoid deleting the raw and creating a new one since I have to perform multiple updates / appends. 

Thanks! 

1 REPLY 1

Does it mean that to add an element to an array we have first read all the elements of the array, then add new one, the save new array?

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group