- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
02-27-2023 09:52 PM
Hi,
I was wondering that what are differences between Materialized view and Streaming table? which one should I use when I extract data from bronze table to silver table since I found that both CREATE LIVE TABLE and CREATE STREAMING LIVE TABLE could achieve the goal and keep the data up-to-date when I set the pipeline mode to continuous?
for my project:
- I first created streaming live table to ingest events into bronze tables
- I want to create some silver layer tables which derived from bronze tables and do some transformation.
My questions are:
- Since delta live table Materialized view support incremental maintenance and update, is it better to always use CREATE LIVE TABLE in silver layer?
- Are there any differences between STREAMING TABLE and Materialized view ?
Thanks a lot.
Accepted Solutions
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
03-08-2023 04:35 AM
@Mike Chen :
Materialized views are precomputed query results that are stored as tables in Delta Lake on the disk. They can be used to speed up queries that are frequently executed and have high computational cost. Materialised views are automatically updated when the underlying data changes, and can be refreshed manually using the REFRESH MATERIALIZED VIEW command. Materialised views are designed for batch processing workloads and are not suitable for streaming data. =
Streaming tables are Delta Lake tables that are continuously updated with new data from streaming sources such as Apache Kafka or Apache Spark Structured Streaming. Streaming tables use Delta Lake's transactional capabilities to ensure data consistency and reliability
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
03-08-2023 04:35 AM
@Mike Chen :
Materialized views are precomputed query results that are stored as tables in Delta Lake on the disk. They can be used to speed up queries that are frequently executed and have high computational cost. Materialised views are automatically updated when the underlying data changes, and can be refreshed manually using the REFRESH MATERIALIZED VIEW command. Materialised views are designed for batch processing workloads and are not suitable for streaming data. =
Streaming tables are Delta Lake tables that are continuously updated with new data from streaming sources such as Apache Kafka or Apache Spark Structured Streaming. Streaming tables use Delta Lake's transactional capabilities to ensure data consistency and reliability
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
05-02-2023 07:21 AM
@Suteja Kanuri
From my understanding When you create a materialized view, its contents reflect the state of the underlying database table or tables at that time. The data in the materialized view remains unchanged, even when applications make changes to the data in the underlying tables. To refresh the view we will need to manually refresh it is this not the case?
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
03-11-2023 07:42 PM
Hi @Mike Chen
Thank you for your question! To assist you better, please take a moment to review the answer and let me know if it best fits your needs.
Please help us select the best solution by clicking on "Select As Best" if it does.
Your feedback will help us ensure that we are providing the best possible service to you.
Thank you!