Hello @Andreyai
good day!!
For AI_queries, we have documentation from databricks. :
https://docs.databricks.com/aws/en/sql/language-manual/functions/ai_query I am 100% sure you will get better insights from the documentations.
But I have something for you from internet:
Estimating Token Counts (Without Running the Query) You can use a tokenizer to approximate prompt and completion tokens based on your input text and expected output.
For Databricks foundation models like DBRX or Meta Llama series, use the cl100k_base encoding from OpenAI's tiktoken library (it's compatible).- Install tiktoken in a Databricks notebook (via %pip install tiktoken).
- Example Python code to estimate:
import tiktoken
def count_tokens(text: str, encoding_name: str = "cl100k_base") -> int:
encoding = tiktoken.get_encoding(encoding_name)
return len(encoding.encode(text))
# Example usage
prompt = "Your prompt text here" # Replace with your actual prompt
estimated_prompt_tokens = count_tokens(prompt)
print(f"Estimated prompt tokens: {estimated_prompt_tokens}")
# For completion, estimate based on expected output length (e.g., max_tokens param)
example_completion = "Sample generated response" # Simulate or use a sample
estimated_completion_tokens = count_tokens(example_completion)
print(f"Estimated completion tokens: {estimated_completion_tokens}")