02-22-2022 11:18 PM
i facing the problem here in creating cluster in databricks.
Error as below :
Message
Cluster terminated.Reason:Unexpected launch failure
An unexpected error was encountered while setting up the cluster. Please retry and contact Databricks if the problem persists.
Internal error message: java.lang.RuntimeException: Internal error (no failure to report)
at com.databricks.backend.manager.AddResourcesStateHelper$.<init>(AddResourcesState.scala:204)
at com.databricks.backend.manager.AddResourcesStateHelper$.<clinit>(AddResourcesState.scala)
at com.databricks.backend.manager.ClusterManager.shouldStopAddingNodes(ClusterManager.scala:3475)
at com.databricks.backend.manager.ClusterManager.runAddResourceSteps(ClusterManager.scala:3625)
at com.databricks.backend.manager.ClusterManager.addResourcesToCluster(ClusterManager.scala:3529)
at com.databricks.backend.manager.ClusterManager.doAddContainersToCluster(ClusterManager.scala:1903)
at com.databricks.backend.manager.ClusterManager.$anonfun$doUpsizeCluster$1(ClusterManager.scala:1361)
at com.databricks.backend.manager.ClusterManager.$anonfun$resizeClusterWrapper$2(ClusterManager.scala:1285)
at com.databricks.backend.manager.ClusterManager.withAuditLog(ClusterManager.scala:2212)
at com.databricks.backend.manager.ClusterManager.$anonfun$resizeClusterWrapper$1(ClusterManager.scala:1282)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.logging.UsageLogging.$anonfun$recordOperation$1(UsageLogging.scala:341)
at com.databricks.logging.UsageLogging.executeThunkAndCaptureResultTags$1(UsageLogging.scala:435)
at com.databricks.logging.UsageLogging.$anonfun$recordOperationWithResultTags$4(UsageLogging.scala:455)
at com.databricks.logging.UsageLogging.$anonfun$withAttributionContext$1(UsageLogging.scala:215)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.AttributionContext$.withValue(AttributionContext.scala:95)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:213)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:210)
at com.databricks.backend.manager.ClusterManager.withAttributionContext(ClusterManager.scala:126)
at com.databricks.logging.UsageLogging.withAttributionTags(UsageLogging.scala:251)
at com.databricks.logging.UsageLogging.withAttributionTags$(UsageLogging.scala:243)
at com.databricks.backend.manager.ClusterManager.withAttributionTags(ClusterManager.scala:126)
at com.databricks.logging.UsageLogging.recordOperationWithResultTags(UsageLogging.scala:430)
at com.databricks.logging.UsageLogging.recordOperationWithResultTags$(UsageLogging.scala:350)
at com.databricks.backend.manager.ClusterManager.recordOperationWithResultTags(ClusterManager.scala:126)
at com.databricks.logging.UsageLogging.recordOperation(UsageLogging.scala:341)
at com.databricks.logging.UsageLogging.recordOperation$(UsageLogging.scala:313)
at com.databricks.backend.manager.ClusterManager.recordOperation(ClusterManager.scala:126)
at com.databricks.backend.manager.ClusterManager.resizeClusterWrapper(ClusterManager.scala:1282)
at com.databricks.backend.manager.ClusterManager.doUpsizeCluster(ClusterManager.scala:1329)
at com.databricks.backend.manager.ClusterManager.doSetupOrUpsize(ClusterManager.scala:2378)
at com.databricks.backend.manager.UpsizeThrottlingMonitor.$anonfun$processRequest$3(UpsizeThrottlingMonitor.scala:339)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at scala.util.Try$.apply(Try.scala:213)
at com.databricks.backend.manager.util.ConsolidatedClusterUpdateHelper.withConsolidatedClusterUpdate(ConsolidatedClusterUpdateHelper.scala:52)
at com.databricks.backend.manager.util.ConsolidatedClusterUpdateHelper.withConsolidatedClusterUpdateForAsync(ConsolidatedClusterUpdateHelper.scala:86)
at com.databricks.backend.manager.util.ConsolidatedClusterUpdateHelper.withConsolidatedClusterUpdateForAsync$(ConsolidatedClusterUpdateHelper.scala:84)
at com.databricks.backend.manager.UpsizeThrottlingMonitor.withConsolidatedClusterUpdateForAsync(UpsizeThrottlingMonitor.scala:105)
at com.databricks.backend.manager.UpsizeThrottlingMonitor.$anonfun$processRequest$2(UpsizeThrottlingMonitor.scala:339)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.logging.UsageLogging.$anonfun$withAttributionContext$1(UsageLogging.scala:215)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.AttributionContext$.withValue(AttributionContext.scala:95)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:213)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:210)
at com.databricks.backend.manager.UpsizeThrottlingMonitor.withAttributionContext(UpsizeThrottlingMonitor.scala:105)
at com.databricks.backend.manager.UpsizeThrottlingMonitor.$anonfun$processRequest$1(UpsizeThrottlingMonitor.scala:338)
at com.databricks.backend.common.util.ParallelRunHelper.$anonfun$runTask$1(ParallelRunHelper.scala:52)
at scala.runtime.java8.JFunction1$mcVI$sp.apply(JFunction1$mcVI$sp.java:23)
at com.databricks.backend.common.util.GenericParallelRunHelper.$anonfun$runInParallel$3(ParallelRunHelper.scala:283)
at com.databricks.logging.UsageLogging.$anonfun$withAttributionContext$1(UsageLogging.scala:215)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.AttributionContext$.withValue(AttributionContext.scala:95)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:213)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:210)
at com.databricks.backend.common.util.GenericParallelRunHelper.withAttributionContext(ParallelRunHelper.scala:176)
at com.databricks.logging.UsageLogging.withAttributionTags(UsageLogging.scala:251)
at com.databricks.logging.UsageLogging.withAttributionTags$(UsageLogging.scala:243)
at com.databricks.backend.common.util.GenericParallelRunHelper.withAttributionTags(ParallelRunHelper.scala:176)
at com.databricks.backend.common.util.GenericParallelRunHelper.$anonfun$runInParallel$2(ParallelRunHelper.scala:283)
at scala.concurrent.Future$.$anonfun$apply$1(Future.scala:659)
at scala.util.Success.$anonfun$map$1(Try.scala:255)
at scala.util.Success.map(Try.scala:213)
at scala.concurrent.Future.$anonfun$map$1(Future.scala:292)
at scala.concurrent.impl.Promise.liftedTree1$1(Promise.scala:33)
at scala.concurrent.impl.Promise.$anonfun$transform$1(Promise.scala:33)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:64)
at com.databricks.threading.NamedExecutor$$anon$2.$anonfun$run$1(NamedExecutor.scala:359)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.logging.UsageLogging.$anonfun$withAttributionContext$1(UsageLogging.scala:215)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.AttributionContext$.withValue(AttributionContext.scala:95)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:213)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:210)
at com.databricks.threading.NamedExecutor.withAttributionContext(NamedExecutor.scala:287)
at com.databricks.threading.NamedExecutor$$anon$2.run(NamedExecutor.scala:358)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:834)
03-30-2022 11:40 AM
Hi @Giin Sing Wong It could have issues with AWS account quotas. Please check if you have the required CPU cores available in quota and share the cluster id and workspace URL if it continues to happen.
02-22-2022 11:46 PM
@Giin Sing Wong , could it be that your CPU quota has been reached?
03-30-2022 11:40 AM
Hi @Giin Sing Wong It could have issues with AWS account quotas. Please check if you have the required CPU cores available in quota and share the cluster id and workspace URL if it continues to happen.
04-11-2022 01:36 PM
Hi @Giin Sing Wong ,
Just a friendly follow-up. Is this issue still happening or you were able to resolve it by increasing your account's quota? Please let us know.
Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.
If there isn’t a group near you, start one and help create a community that brings people together.
Request a New Group