What I am doing:
spark_df = spark.createDataFrame(dfnew)
spark_df.write.saveAsTable("default.test_table", index=False, header=True)
This automatically detects the datatypes and is working right now. BUT, what if the datatype cannot be detected or detects wrong? Mostly concerned about doubles, ints, bigints.
I tested casting but it doesnt work on databricks:
spark_df = spark.createDataFrame(dfnew.select(dfnew("Year").cast(IntegerType).as("Year")))
Is there a way to feed a DDL to spark dataframe for databricks? Should I not use spark to create the table?