While Spark does use a micro-batch execution model, this does not have much impact on applications, because the batches can be as short as 0.5 seconds. In most applications of streaming big data, the analytics is done over a larger window (say 10 minutes), or the latency to get data in is higher (e.g. sensors collect readings every 10 seconds). Spark's model enables exactly-once semantics and consistency, meaning the system gives correct results despite slow nodes or failures.