cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

Is it possible to write a pyspark dataframe to a custom log table in Log Analytics workspace?

frank7
New Contributor II

I have a pyspark dataframe that contains information about the tables that I have on sql database (creation date, number of rows, etc)

Sample data:

 {
   "Day":"2023-04-28",
   "Environment":"dev",
   "DatabaseName":"default",
   "TableName":"discount",
   "CountRows":31253
}

and I want to write this dataframe to a custom log table that I created on Log Analytics workspace, is it possible?

Thank you !

1 ACCEPTED SOLUTION

Accepted Solutions

Anonymous
Not applicable

@Bruno Simoes​ :

Yes, it is possible to write a PySpark DataFrame to a custom log table in Log Analytics workspace using the Azure Log Analytics Workspace API.

Here's a high-level overview of the steps you can follow:

  1. Create an Azure Log Analytics Workspace and obtain the Workspace ID and Primary Key.
  2. Install the 'azure-loganalytics' library using pip.
  3. Create a new instance of the 'LogAnalyticsWorkspace' class from the 'azure.loganalytics' module using the Workspace ID and Primary Key.
  4. Convert your PySpark DataFrame to a Pandas DataFrame using the 'toPandas()' method.
  5. Convert the Pandas DataFrame to a JSON string using the 'to_json()' method.
  6. Use the 'LogAnalyticsWorkspace' instance to send the JSON string to the custom log table using the 'post_data()' method.

Here's some example code:

from azure.loganalytics import LogAnalyticsWorkspace
import pandas as pd
 
# Replace with your Workspace ID and Primary Key
workspace_id = 'YOUR_WORKSPACE_ID'
primary_key = 'YOUR_PRIMARY_KEY'
 
# Create a new instance of the LogAnalyticsWorkspace class
workspace = LogAnalyticsWorkspace(workspace_id, primary_key)
 
# Convert PySpark DataFrame to Pandas DataFrame
pandas_df = spark_df.toPandas()
 
# Convert Pandas DataFrame to JSON string
json_str = pandas_df.to_json(orient='records')
 
# Send JSON string to custom log table in Log Analytics workspace
workspace.post_data('CUSTOM_LOG_TABLE_NAME', json_str)

Replace 'YOUR_WORKSPACE_ID', 'YOUR_PRIMARY_KEY', and 'CUSTOM_LOG_TABLE_NAME' with your own values.

View solution in original post

2 REPLIES 2

Anonymous
Not applicable

@Bruno Simoes​ :

Yes, it is possible to write a PySpark DataFrame to a custom log table in Log Analytics workspace using the Azure Log Analytics Workspace API.

Here's a high-level overview of the steps you can follow:

  1. Create an Azure Log Analytics Workspace and obtain the Workspace ID and Primary Key.
  2. Install the 'azure-loganalytics' library using pip.
  3. Create a new instance of the 'LogAnalyticsWorkspace' class from the 'azure.loganalytics' module using the Workspace ID and Primary Key.
  4. Convert your PySpark DataFrame to a Pandas DataFrame using the 'toPandas()' method.
  5. Convert the Pandas DataFrame to a JSON string using the 'to_json()' method.
  6. Use the 'LogAnalyticsWorkspace' instance to send the JSON string to the custom log table using the 'post_data()' method.

Here's some example code:

from azure.loganalytics import LogAnalyticsWorkspace
import pandas as pd
 
# Replace with your Workspace ID and Primary Key
workspace_id = 'YOUR_WORKSPACE_ID'
primary_key = 'YOUR_PRIMARY_KEY'
 
# Create a new instance of the LogAnalyticsWorkspace class
workspace = LogAnalyticsWorkspace(workspace_id, primary_key)
 
# Convert PySpark DataFrame to Pandas DataFrame
pandas_df = spark_df.toPandas()
 
# Convert Pandas DataFrame to JSON string
json_str = pandas_df.to_json(orient='records')
 
# Send JSON string to custom log table in Log Analytics workspace
workspace.post_data('CUSTOM_LOG_TABLE_NAME', json_str)

Replace 'YOUR_WORKSPACE_ID', 'YOUR_PRIMARY_KEY', and 'CUSTOM_LOG_TABLE_NAME' with your own values.

frank7
New Contributor II

Thanks a lot @Suteja Kanuri​ 🙂

And the opposite, do you know how I can read those tables and using as a Pyspark DataFrames ?

Once again thank you very much !!

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group