- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
โ03-12-2024 12:05 PM
I have a pyspark.pandas.frame.DataFrame object (that I called from `pandas_api` on a pyspark.sql.dataframe.DataFrame object). I have a complicated transformation that I would like to apply to this data, and in particular I would like to apply it in blocks based on the value of a column 'C'.
If it had been a pandas.core.frame.DataFrame object, I could do:
for _,chunk in df.groupby("C"):
// do stuff
When I try this with a pyspark.pandas.frame.DataFrame object, I get `KeyError: (0,)`.
My question is: how do I get access to the grouped data in a pyspark.pandas.groupby.DataFrameGroupBy object? Is this possible at all, or am I only allowed to run aggregate functions?
- Labels:
-
Spark
Accepted Solutions
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
โ03-13-2024 01:29 AM
When working with a pyspark.pandas.frame.DataFrame object and needing to apply transformations to grouped data based on a specific column, you can utilize the groupby method followed by the apply function. This way allows you to group the data based on the values of the specified column and then apply custom transformation logic to each group.
Say if you have a pyspark.pandas.frame.DataFrame object named df, and you want to group the data by the column 'C' and then apply a transformation to each group, you can do the following:
from pyspark.sql import SparkSession
from pyspark.sql.types import IntegerType, StringType, StructType, StructField
from pyspark.sql.functions import pandas_udf, PandasUDFType
# Create SparkSession
spark = SparkSession.builder.appName("GroupByTransform").getOrCreate()
# Sample Data
data = {"A": [1, 2, 3, 4, 5], "B": ["x", "y", "x", "z", "x"], "C": [1, 1, 2, 2, 1]}
# Define the schema for the original DataFrame
schema = StructType([
StructField("A", IntegerType(), True),
StructField("B", StringType(), True),
StructField("C", IntegerType(), True)
])
# Create PySpark DataFrame with explicit schema
df = spark.createDataFrame(list(zip(data["A"], data["B"], data["C"])), schema=schema)
# Convert to Pandas DataFrame
pandas_df = df.toPandas()
# Define the schema for the transformed DataFrame
new_schema = StructType([
StructField("col1", IntegerType(), True),
StructField("col2", StringType(), True)
])
# Define the transformation function
@pandas_udf(new_schema, PandasUDFType.GROUPED_MAP)
def transform_block(data):
# Transformation logic (replace with your logic)
new_data = {
"col1": data["A"] * 2, # Example transformation on column 'A'
"col2": data["B"] # Example transformation on column 'B'
}
return data.assign(**new_data)[["col1", "col2"]] # Return only the columns specified in new_schema
# Apply transformation using apply
transformed_df = df.groupby("C").apply(transform_block)
# Show the result
transformed_df.show()
This way you can work with the grouped data similarly to how you would with a pandas DataFrame,
enabling you to perform complex transformations.
London
United Kingdom
view my Linkedin profile
https://en.everybodywiki.com/Mich_Talebzadeh
Disclaimer: The information provided is correct to the best of my knowledge but of course cannot be guaranteed . It is essential to note that, as with any advice, quote "one test result is worth one-thousand expert opinions (Werner Von Braun)".
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
โ03-13-2024 01:29 AM
When working with a pyspark.pandas.frame.DataFrame object and needing to apply transformations to grouped data based on a specific column, you can utilize the groupby method followed by the apply function. This way allows you to group the data based on the values of the specified column and then apply custom transformation logic to each group.
Say if you have a pyspark.pandas.frame.DataFrame object named df, and you want to group the data by the column 'C' and then apply a transformation to each group, you can do the following:
from pyspark.sql import SparkSession
from pyspark.sql.types import IntegerType, StringType, StructType, StructField
from pyspark.sql.functions import pandas_udf, PandasUDFType
# Create SparkSession
spark = SparkSession.builder.appName("GroupByTransform").getOrCreate()
# Sample Data
data = {"A": [1, 2, 3, 4, 5], "B": ["x", "y", "x", "z", "x"], "C": [1, 1, 2, 2, 1]}
# Define the schema for the original DataFrame
schema = StructType([
StructField("A", IntegerType(), True),
StructField("B", StringType(), True),
StructField("C", IntegerType(), True)
])
# Create PySpark DataFrame with explicit schema
df = spark.createDataFrame(list(zip(data["A"], data["B"], data["C"])), schema=schema)
# Convert to Pandas DataFrame
pandas_df = df.toPandas()
# Define the schema for the transformed DataFrame
new_schema = StructType([
StructField("col1", IntegerType(), True),
StructField("col2", StringType(), True)
])
# Define the transformation function
@pandas_udf(new_schema, PandasUDFType.GROUPED_MAP)
def transform_block(data):
# Transformation logic (replace with your logic)
new_data = {
"col1": data["A"] * 2, # Example transformation on column 'A'
"col2": data["B"] # Example transformation on column 'B'
}
return data.assign(**new_data)[["col1", "col2"]] # Return only the columns specified in new_schema
# Apply transformation using apply
transformed_df = df.groupby("C").apply(transform_block)
# Show the result
transformed_df.show()
This way you can work with the grouped data similarly to how you would with a pandas DataFrame,
enabling you to perform complex transformations.
London
United Kingdom
view my Linkedin profile
https://en.everybodywiki.com/Mich_Talebzadeh
Disclaimer: The information provided is correct to the best of my knowledge but of course cannot be guaranteed . It is essential to note that, as with any advice, quote "one test result is worth one-thousand expert opinions (Werner Von Braun)".
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
โ05-13-2024 02:58 PM
Hi Mich,
I have a similar pandas_udf. The scripts failed to run on an all purpose cluster. The error is [UC_COMMAND_NOT_SUPPORTED.WITHOUT_RECOMMENDATION] The command(s): Spark higher-order functions are not supported in Unity Catalog. Do you know by any chance how to make it work with UC or it is not supported by the UC? I couldn't find the relevant documentation.
Thanks!
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
โ05-14-2024 07:39 AM
Hi,
The error indicates that the Unity Catalog does not support Spark higher-order functions, such as those used in pandas_udf. This limitation likely comes from architectural or compatibility constraints. To resolve the issue, consider alternative approaches or APIs supported by the Unity Catalog for achieving similar functionality.
London
United Kingdom
view my Linkedin profile
https://en.everybodywiki.com/Mich_Talebzadeh
Disclaimer: The information provided is correct to the best of my knowledge but of course cannot be guaranteed . It is essential to note that, as with any advice, quote "one test result is worth one-thousand expert opinions (Werner Von Braun)".

