@Sanjoy Senโ :
Yes, it is possible to load the data from a DataFrame into Azure Storage Queue/Message Queue. Here's one possible approach:
- Convert the DataFrame into a JSON string using the toJSON() method.
- Use the Azure Storage Queue/Message Queue client library for Python to create a queue client object and send the JSON string as a message to the queue. You will need to authenticate with the Azure storage account using a connection string or credentials.
Here's some example code to get you started:
import json
from azure.storage.queue import QueueClient
# Convert the DataFrame to a JSON string
json_data = df.toJSON().collect()
# Create a queue client object
queue_client = QueueClient.from_connection_string(conn_str="<your-connection-string>", queue_name="<your-queue-name>")
# Send the JSON string as a message to the queue
for data in json_data:
message = json.dumps(data)
queue_client.send_message(message)
In the above code, replace <your-connection-string> with the connection string for your Azure storage account and <your-queue-name> with the name of your queue. Also, make sure to handle any errors or exceptions that may occur during the message sending process.