Hi, I'm using Databricks Feature Store to register a custom model using a model wrapper as follows:
# Log custom model to MLflow
fs.log_model(
artifact_path="model",
model = production_model,
flavor = mlflow.pyfunc,
training_set = training_set,
registered_model_name = model_name,
conda_env=model_env
)
The model is correctly serving and I can score batch using the model's uri:
fs.score_batch('models:/model_name/latest',
dataset,
result_type = ArrayType(StringType()))
What I can not do is to load the model using:
import mlflow
import databricks.feature_store
mlflow.pyfunc.load_model('models:/model_name/latest')
I keep on getting the following error:
ModuleNotFoundError: No module named 'databricks.feature_store.mlflow_model'
What is the correct way to load or log the model for this case?