cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

Autoloader includeExistingFiles with retry didn't update the schema

ajithgaade
New Contributor III

Hi,
written in pyspark.

databricks autoloader job with retry didn't merge/update the schema.

spark.readStream.format("cloudFiles")

.option("cloudFiles.format", "parquet")

.option("cloudFiles.schemaLocation", checkpoint_path)

.option("cloudFiles.includeExistingFiles", "false"

.load(source_path)

.writeStream

.queryName("write stream query")

.option("checkpointLocation", checkpoint_path)

.trigger(availableNow=True)

.forEachBatch(batch_operation)

.option("mergeSchema", True)

.start()

.awaitTermination()

 

Error: 

Error while reading file s3://path
Caused by: UnknownFieldException: [UNKNOWN_FILED_EXCEPTION.NEW_FILEDS_IN_FILE] Encountered unknown fields during parsing: filed type, which can be fixed by an automatic retry: false

tried running couple of times. set retry = 2 for job and task as well.

please can you help?

8 REPLIES 8

Witold
Honored Contributor

What happens if you enable rescue mode?

.option('cloudFiles.schemaEvolutionMode', 'rescue')

ajithgaade
New Contributor III

@Witold 

rescue option won't evolve the schema.
https://docs.databricks.com/en/ingestion/auto-loader/schema.html#:~:text=evolve%20data%20types.-,res...

my requirement is schema should evolve automatically

Giri-Patcham
Databricks Employee
Databricks Employee

Hi @ajithgaade ,

If you are using a merge statement inside the forEachBatch function batch_operation then you have to use DBR 15.2 and above to evolve the schema
https://docs.databricks.com/en/delta/update-schema.html#automatic-schema-evolution-for-delta-lake-me...

 

Hi @Giri-Patcham
batch operation doesn't has merge statement. I am dropping tables and recreating. Tried clearing checkpoint location many times and different options. Tried with DBR 15.3, No Luck.

@ajithgaade can you share the sample code inside the batch function ?

Below is the sample one
 
def batch_operation(df, batch_id😞
    logger.info(f"batch_id: {batch_id}")
   
    src_cnt = 0
    filtr_cnt = 0
    df = src_table_df \
        .withColumn('load_ctl_key', lit(aws_lck)

    src_columns = df.columns

    # checksum text column is generated and added to the DataFrame.
   
    if condition
        df2 = create_chk_sum_txt(df=df, cols=col_info, exc_cols=exclude_columns)
    else:
        df2 = df

    df3 = df2.filter(
        col("id").isNull() | (length(col("id")) > 50) | (length(col("cd")) > 10) | \
        (col("5yr").isNotNull() & col("5yr").cast("int").isNull())
    )

    #    columns=df3.columns
    logger.info("df3 completed")

    df4 = df3.withColumn("error_reason", when(col("id").isNull(), "id is Null") \
                         .when(length(col("id")) > 50, "id exceeds column size in base table") \
                         .otherwise("Miscellaneous Error"))

    #   Filter valid records to be loaded to Base Table
    df5 = df2.exceptAll(df3).withColumn("error_reason", lit(""))

    ins_cnt = df5.count()
    filtr_cnt = src_cnt - ins_cnt

    logger.info('src_cnt: {}'.format(src_cnt))
    logger.info('ins_cnt: {}'.format(ins_cnt))
    logger.info('filtr_cnt: {}'.format(filtr_cnt))

    select_df = df5.select(*col_info)
    logger.info("select_df completed")

    err_df = df4.select(*col_info)
    logger.info("err_df completed")

    logger.info("Final Schema before writing to UC:")
    select_df.printSchema()
    err_df.printSchema()

 

 

    (
        transformed_df.write
        .mode("append")
        .saveAsTable(f"catalog.schema.{trgt_tbl}")
    )

 

    (
        err_df.write
        .mode("append")
        .saveAsTable(f"catalog.schema.{err_tbl}")
    )

 

    if int(load_ctl_key) != -1:
        print("Pushing metrics to UC")

 

        payload = {
            "load_ctl_key": load_ctl_key,
            "job_id": job_id,
            "batch_id": batch_id,
            "table": trgt_tbl,
            "src_cnt": src_cnt,
            "filter_cnt": filtr_cnt,
            "ins_cnt": ins_cnt
        }

 

        print("Payload: {}".format(payload))

 

        payload_df = spark.read.json(sc.parallelize([payload]))
        display(payload_df)

 

        payload_df.write.mode("append").saveAsTable(f"catalog.schema.audit")

@ajithgaade 

can you try setting this conf 

spark.conf.set("spark.databricks.delta.schema.autoMerge.enabled", "true")

mtajmouati
Contributor

Hello,

Try this : 

 

from pyspark.sql import SparkSession

# Initialize Spark session
spark = SparkSession.builder \
    .appName("Auto Loader Schema Evolution") \
    .getOrCreate()

# Source and checkpoint paths
source_path = "s3://path"
checkpoint_path = "/path/to/checkpoint"

# Define batch processing function
def batch_operation(df, epoch_id):
    # Perform your batch operations here
    # For example, write to Delta table with schema merge
    df.write \
      .format("delta") \
      .mode("append") \
      .option("mergeSchema", "true") \
      .save("/path/to/delta/table")

# Read stream with schema evolution
df = spark.readStream.format("cloudFiles") \
    .option("cloudFiles.format", "parquet") \
    .option("cloudFiles.schemaLocation", checkpoint_path) \
    .option("cloudFiles.includeExistingFiles", "false") \
    .option("cloudFiles.inferColumnTypes", "true") \
    .load(source_path)

# Write stream with schema merge
query = df.writeStream \
    .format("delta") \
    .option("checkpointLocation", checkpoint_path) \
    .trigger(availableNow=True) \
    .foreachBatch(batch_operation) \
    .option("mergeSchema", "true") \
    .start()

query.awaitTermination()

  

and try Setting Retry Policies 

{
  "tasks": [
    {
      "task_key": "example-task",
      "notebook_task": {
        "notebook_path": "/path/to/your/notebook"
      },
      "max_retries": 2,
      "min_retry_interval_millis": 60000,
      "retry_on_timeout": true
    }
  ]
}

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group