cancel
Showing results for 
Search instead for 
Did you mean: 
Data Engineering
Join discussions on data engineering best practices, architectures, and optimization strategies within the Databricks Community. Exchange insights and solutions with fellow data engineers.
cancel
Showing results for 
Search instead for 
Did you mean: 

Parametrized SQL - Pass column names as a parameter?

StephanKnox
New Contributor III

Hi all, 

Is there a way to pass a column name(not a value) in a parametrized Spark SQL query?

I am trying to do it like so, however it does not work as I think column name get expanded like 'value' i.e. surrounded by single quotes:

 

def count_nulls(df:DataFrame, column:str) -> DataFrame:
        return spark.sql("""
                     SELECT count_if({column} IS NULL)
                     FROM {df}
                     """, df=df, column=column)
Does not work, code below returns the correct count:
 
(spark.sql("""
                     SELECT count_if(city IS NULL)
                     FROM {df}
                     """, df=df)).show()
 
Than you in advance!
 
Test data:
Spoiler
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, FloatType, DateType
from pyspark.sql import DataFrame, functions as F

test_data_1 = [
    ('2023-01-10', 123, 50.0, 'bikes', 'LA', {"street_name":"Left Street", "street_number": 1, "zip_code": "8070"}),
    ('2023-01-31', 123, 150.0, None, 'LA', {"street_name":"North Street", "street_number": 1, "zip_code": "1234"}),
    ('2023-01-10', 321, 500.0, 'pans', 'NY', {"street_name":"Dark Street", "street_number": 2, "zip_code": "1234"}),
    ('2023-01-10', 321, 500.0, 'pans', 'NY', {"street_name":"Dark Street", "street_number": 2, "zip_code": "1234"}),
    ('2023-01-10', 123, 5000.0, 'cars', 'LA', {"street_name":"", "street_number": None, "zip_code": ""}),
    ('2023-02-28', 213, 300.0, 'spoons', None, {"street_name":"", "street_number": None, "zip_code": ""}),
    ('2023-03-10', 321, 50000.0, 'cars', 'NY', {"street_name":"", "street_number": None, "zip_code": ""}),
    ('2023-03-31', 213, None, 'cars', 'SF', {"street_name":"", "street_number": None, "zip_code": ""}),
    ('2023-04-30', 432, None, 'plates', 'SF', {"street_name":"", "street_number": None, "zip_code": ""})
]

test_data_schema_1 = StructType([
    StructField("purchase_date", StringType(), True),
    StructField("customer_id", IntegerType(), True),
    StructField("amount", FloatType(), True),
    StructField("category", StringType(), True),
    StructField("city", StringType(), True),
    StructField("address", StructType([
        StructField("street_name", StringType(), True),
        StructField("street_number", IntegerType(), True),
        StructField("zip_code", StringType(), True)
    ]), True)
])

df = spark.createDataFrame(test_data_1, test_data_schema_1)

 

0 REPLIES 0

Connect with Databricks Users in Your Area

Join a Regional User Group to connect with local Databricks users. Events will be happening in your city, and you won’t want to miss the chance to attend and share knowledge.

If there isn’t a group near you, start one and help create a community that brings people together.

Request a New Group